5 research outputs found

    Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR

    Get PDF
    Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of 7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers. The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the 7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of internal deleted genes involved in the human genetic diseases

    On the possibility that H1 histone interaction with DNA occurs through phosphates connecting lysine and arginine side chain groups

    Get PDF
    Gel filtration and velocity of sedimentation analyses on native and on lysine- and arginine- modified forms of the annelid worm Chaetopterus variopedatus sperm H1 histone indicate that anion-mediated lysine - arginine interactions play a relevant role in the stabilization of the oligomeric states of the molecule. CD spectroscopy shows that phosphate anions are at least an order of magnitude more efficient than chloride as negatively charged groups connecting H1 lysines and arginines. Acetylation of lysines, although not altering grossly the H1 properties, causes a tenfold decrease of the structuring efficiency of phosphates. This suggests that DNA phosphates may be sandwiched between lysine and arginine groups of H1 histone when this molecule binds to chromatin, constituting a relevant parameter for the reciprocal stabilization of the protein and of the chromatin higher order structures

    On the possibility that H1 histone interaction with DNA occurs through phosphates connecting lysine and arginine side chain groups.

    No full text
    Role of arginine/lysine interactions mediated by anions in H1 histone organizatio

    Impact of mass effect, tumor location, age, and surgery on the cognitive outcome of patients with high-grade gliomas: a longitudinal study

    No full text
    Background. High-grade gliomas are the most frequently occurring brain tumors and carry unfavorable prognosis. Literature is controversial regarding the effects of surgery on cognitive functions. Methods. We analyzed a homogenous population of 30 patients with high-grade glioma who underwent complete resection. Patients underwent extensive neuropsychological analysis before surgery, 7 days after surgery, and approximately 40 days after surgery, before adjuvant treatments. Thirty-four neuropsychological tests were administered in the language, memory, attention, executive functions, and praxis domains. Results. The preoperative percentage of patients with impairment in the considered tests ranged from 0% to 53.3% (mean 20.9%). Despite a general worsening at early follow-up, a significant recovery was observed at late follow-up. Preoperative performances in language and verbal memory tasks depended on the joint effect of tumor volume, volume of surrounding edema, and tumor localization, with major deficits in patients with left lateralized tumor, especially insular and temporal. Preoperative performances in attention and constructive abilities tasks depended on the joint effect of tumor volume, volume of surrounding edema, and patient age, with major deficits in patients ≥ 65 years old. Recovery at late follow-up depended on the volume of resected tumor, edema resorption, and patient age. Conclusions. Longitudinal neuropsychological performance of patients affected by high-grade glioma depends, among other factors, on the complex interplay of tumor volume, volume of surrounding edema, tumor localization, and patient age. Reported results support the definition of criteria for surgical indication based on the above factors. They may be used to propose more customized surgical, oncological, and rehabilitative strategies

    Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR

    No full text
    Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of 7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers. The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the 7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of internal deleted genes involved in the human genetic diseases
    corecore