131 research outputs found

    Phosphoproteomics of retinoblastoma:A pilot study identifies aberrant kinases

    Get PDF
    Retinoblastoma is a malignant tumour of the retina which most often occurs in children. Earlier studies on retinoblastoma have concentrated on the identification of key players in the disease and have not provided information on activated/inhibited signalling pathways. The dysregulation of protein phosphorylation in cancer provides clues about the affected signalling cascades in cancer. Phosphoproteomics is an ideal tool for the study of phosphorylation changes in proteins. Hence, global phosphoproteomics of retinoblastoma (RB) was carried out to identify signalling events associated with this cancer. Over 350 proteins showed differential phosphorylation in RB compared to control retina. Our study identified stress response proteins to be hyperphosphorylated in RB which included H2A histone family member X (H2AFX) and sirtuin 1. In particular, Ser140 of H2AFX also known as gamma-H2AX was found to be hyperphosphorylated in retinoblastoma, which indicated the activation of DNA damage response pathways. We also observed the activation of anti-apoptosis in retinoblastoma compared to control. These observations showed the activation of survival pathways in retinoblastoma. The identification of hyperphosphorylated protein kinases including Bromodomain containing 4 (BRD4), Lysine deficient protein kinase 1 (WNK1), and Cyclin-dependent kinase 1 (CDK1) in RB opens new avenues for the treatment of RB. These kinases can be considered as probable therapeutic targets for RB, as small-molecule inhibitors for some of these kinases are already in clinical trials for the treatment other cancers

    Clinico-pathological association of delineated miRNAs in uveal melanoma with monosomy 3/Disomy 3 chromosomal aberrations

    Full text link
    PURPOSE: To correlate the differentially expressed miRNAs with clinico-pathological features in uveal melanoma (UM) tumors harbouring chromosomal 3 aberrations among South Asian Indian cohort. METHODS: Based on chromosomal 3 aberration, UM (n = 86) were grouped into monosomy 3 (M3; n = 51) and disomy 3 (D3; n = 35) by chromogenic in-situ hybridisation (CISH). The clinico-pathological features were recorded. miRNA profiling was performed in formalin fixed paraffin embedded (FFPE) UM samples (n = 6) using Agilent, Human miRNA microarray, 8x15KV3 arrays. The association between miRNAs and clinico-pathological features were studied using univariate and multivariate analysis. miRNA-gene targets were predicted using Target-scan and MiRanda database. Significantly dys-regulated miRNAs were validated in FFPE UM (n = 86) and mRNAs were validated in frozen UM (n = 10) by qRT-PCR. Metastasis free-survival and miRNA expressions were analysed by Kaplen-Meier analysis in UM tissues (n = 52). RESULTS: Unsupervised analysis revealed 585 differentially expressed miRNAs while supervised analysis demonstrated 82 miRNAs (FDR; Q = 0.0). Differential expression of 8 miRNAs: miR-214, miR-149*, miR-143, miR-146b, miR-199a, let7b, miR-1238 and miR-134 were studied. Gene target prediction revealed SMAD4, WISP1, HIPK1, HDAC8 and C-KIT as the post-transcriptional regulators of miR-146b, miR-199a, miR-1238 and miR-134. Five miRNAs (miR-214, miR146b, miR-143, miR-199a and miR-134) were found to be differentially expressed in M3/ D3 UM tumors. In UM patients with liver metastasis, miR-149* and miR-134 expressions were strongly correlated. CONCLUSION: UM can be stratified using miRNAs from FFPE sections. miRNAs predicting liver metastasis and survival have been identified. Mechanistic linkage of de-regulated miRNA/mRNA expressions provide new insights on their role in UM progression and aggressiveness

    Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors

    Get PDF
    Retinoblastoma is a rare pediatric tumor of the retina, caused by the homozygous loss of the Retinoblastoma 1 (RB1) tumor suppressor gene. Previous microarray studies have identified changes in the expression profiles of coding genes; however, our understanding of how non-coding genes change in this tumor is absent. This is an important area of research, as in many adult malignancies, non-coding genes including LNC-RNAs are used as biomarkers to predict outcome and/or relapse. To establish a complete and in-depth RNA profile, of both coding and non-coding genes, in Retinoblastoma tumors, we conducted RNA-seq from a cohort of tumors and normal retina controls. This analysis identified widespread transcriptional changes in the levels of both coding and non-coding genes. Unexpectedly, we also found rare RNA fusion products resulting from genomic alterations, specific to Retinoblastoma tumor samples. We then determined whether these gene expression changes, of both coding and non-coding genes, were also found in a completely independent Retinoblastoma cohort. Using our dataset, we then profiled the potential effects of deregulated LNC-RNAs on the expression of neighboring genes, the entire genome, and on mRNAs that contain a putative area of homology. This analysis showed that most deregulated LNC-RNAs do not act locally to change the transcriptional environment, but potentially function to modulate genes at distant sites. From this analysis, we selected a strongly down-regulated LNC-RNA in Retinoblastoma, DRAIC, and found that restoring DRAIC RNA levels significantly slowed the growth of the Y79 Retinoblastoma cell line. Collectively, our work has generated the first non-coding RNA profile of Retinoblastoma tumors and has found that these tumors show widespread transcriptional deregulation

    Tele-ophthalmology

    No full text

    Can retinal microtrauma by internal limiting membrane peeling cause retinal angiomatosis proliferans?

    No full text
    A 32-year-old male presented with decreased vision in right eye since 1 month following trauma with plastic ball. Best-corrected visual acuity (BCVA) was 20/160 in right eye and 20/20 in left. Right eye examination revealed angle recession, choroidal rupture, and macular hole. He underwent vitrectomy, internal limiting membrane (ILM) peeling, and 14% C3F8 gas injection. After 6 weeks, BCVA was 20/30; fundus showed macular hole closure. Six months after surgery, fundus revealed retinal vascular lesions suggestive of stage I RAP-like lesions; vision was maintained. Clinical findings were confirmed on Video ICGA, FFA, and OCT. The patient was periodically reviewed and lesions were nonprogressive until last follow-up, 13 months after surgery. It seems quite probable that ILM peeling may have caused retinal microtrauma leading to the formation of RAP-like lesions. What factors lead to such an event is as yet not clearly understood. Hence, larger studies with a longer follow-up are warranted to better understand these findings

    Combination photodynamic therapy and bevacizumab for choroidal neovascularization associated with toxoplasmosis

    No full text
    A 14-year-old girl presenting with visual loss in both eyes was diagnosed to have healed toxoplasma retinochoroiditis in the right eye with active choroidal neovascularization (CNV) secondary to toxoplasmosis in the left. She underwent combination photodynamic therapy (PDT) and intravitreal bevacizumab as primary treatment. PDT was performed as per the ′Treatment of Age-related Macular Degeneration by Photodynamic therapy′ study protocol and was followed by intravitreal bevacizumab after 2 days. CNV regressed at 8 weeks of follow-up and remained stable at 8 months of follow-up. The initial visual acuity improved from 20/120 to 20/30. Combination therapy with PDT and intravitreal bevacizumab appears to be effective in the treatment of CNV secondary to toxoplasma retinochoroiditis
    • …
    corecore