10 research outputs found

    Ecology of charophytes – permanent pioneers and ecosystem engineers

    Get PDF
    For almost a century, charophytes have been regarded as a group that is confined to low-nutrient-clear water conditions. In light of recent research, this generalisation of the ecological niche dimensions of charophytes has changed and now includes more facets of ecological existence. In this review, the current knowledge with respect to species-specificity as well as temporal aspects – ontogenetic and successional ones – of the ecological requirements of charophytes are presented and discussed. This review identifies new directions for ecological research on charophytes as well as knowledge gaps to be filled, not just for reasons of academic curiosity, but also for applied purposes such as lake restoration, bioremediation and bioindication of water quality and water regime

    The physico-chemical diversity of pit lakes of the Muskau Arch (Western Poland) in the context of their evolution and genesis

    No full text
    In the vegetation seasons 2016–2017, a survey of 30 pit lakes localized in the eastern part of the Muskau Arch (Western Poland) was carried out. The aim of the study was to characterize the habitat conditions of the selected lakes, based on the physico-chemical water characteristics. We hypothesized that the age and genesis of pit lakes are the main factors responsible for their hydro-chemical diversity. Therefore, in each of the lakes 27 physico-chemical parameters and chlorophyll a were measured in the water surface, in the peak of the vegetation season (July–August). Additionally, they were described in terms of genesis, origin and age. The results showed that the investigated lakes display a high diversity of habitat conditions reflected in varied physico-chemical water properties (significant lake-to-lake differences). The parameters mostly responsible for the differences were: Secchi depth (transparency), pH, EC, colour, hardness, TP, TN, TC, Ca2+, Mg2+, Fe, Al, Mn, S and Chl a. The comparison of the type of excavated aggregate showed significant differences for four parameters only. Much greater differences were found for the genesis of lakes (mining method) – 15 of the 28 analysed parameters significantly differentiated the lakes. Further analysis showed that half of the studied parameters were significantly correlated with the age of the pit lakes. Our results suggest that in addition to natural changes, secondary human-caused transformations (mostly neutralization and fertilization of the water) were among the key factors responsible for the differentiation of the lakes

    Water Quality Assessment of a Meromictic Lake Based on Physicochemical Parameters and Strontium Isotopes (87Sr/86Sr) Analysis: A Case Study of Lubińskie Lake (Western Poland)

    No full text
    In 2017, hydrochemical surveys of meromictic Lubińskie Lake (W Poland) and its water inflows were carried out. The lake experienced complete mixing in 2008 due to a series of orkan winds, and since 2015, intensifying worsening of water quality in the lake has been observed. Our aim was to determine the degree of transformation of Lubińskie Lake based on water chemistry and to identify the source of pollution of the lake using strontium isotopes (87Sr/86Sr) as a new chemical tracking tool. The physicochemical analysis confirmed the meromictic character of the lake. The comparison with previous studies (2003 and 2008) showed significant year-to-year differentiation, indicating intensifying eutrophication of the lake’s water, both in the epilimnion and the hypolimnion. Nine spring niches, directly supplying the lake, provide water with very high phosphorus and nitrogen concentrations (up to 10 kg of nitrogen and 0.9 kg of phosphorus daily). The strontium isotopes (87Sr/86Sr) analysis indicated that the lake’s water was supplied mostly by the springs, and recharge from deep aquifers is of secondary importance. Moreover, strontium isotope data and the relationship between Sr and Cl content support the finding that the high load of nutrients is of anthropogenic origin and reaches the lake through springs

    Seasonality of Water Chemistry, Carbonate Production, and Biometric Features of Two Species of Chara in a Shallow Clear Water Lake

    No full text
    The objective of this study was to analyze the temporal variability of biometric features and the carbonate production of two charophytes: Chara polyacantha A. Braun and Chara rudis A. Braun against the background of the physical-chemical properties of water. The investigation was carried out in a small, mid-forest Lake Jasne (western Poland). It is a polymictic, mesotrophic, hardwater ecosystem dominated by charophyte vegetation. Each month, 10 individuals of each species were characterized in terms of morphometric features, fresh and dry weight, and the percentage of calcium carbonate. Additionally, physical-chemical parameters of the water were studied. The results of physical-chemical analyses indicated similar habitat conditions for both species. Despite smaller dry weight C. polyacantha was characterized by greater morphological variability and higher rates of growth and percentage share of calcium carbonate in dry mass than C. rudis. The percentage of calcium carbonates in dry mass did not differ significantly between the species and exceeded 60%, reaching the maximum (76% in C. polyacantha) in July and August. For both species, distinct correlations between the structure of biomass and morphological features were found. The obtained results show the great importance of charophyte vegetation in carbon cycling and functioning of lake ecosystems

    Effects of overabundant nitrate and warmer temperatures on charophytes: The roles of plasticity and local adaptation

    No full text
    Global change effects, such as warming and increases in nitrogen loading, alter vulnerable Mediterranean aquatic systems, and charophytes can be one of the most affected groups. We addressed the possible interaction between these factors on two populations of the cosmopolitan charophytes Chara hispida and Chara vulgaris. Populations were taken from two different environments, a nitrate-poor mountain lake and a nitrate-rich Mediterranean coastal spring. The laboratory experiment had a 2 × 2 factorial design based on two nitrate levels (similar to and double the local conditions) and two temperatures. Increased temperatures favoured the growth of the four populations, but an increase in nitrate did not have any effect on their growth or architecture. Both species took up and stored more nitrogen (measured as %N in plant tissue) when more nitrate was supplied, and warming favoured this increase in %N and, consequently, in N:P ratio. The effects of both factors depended on the local conditions where the populations originated and on the species. Chara vulgaris, a pioneer species, exhibited more phenotypic plasticity than C. hispida, and its ecotype from the coastal spring was better adapted to changes in temperature and nitrate level. These differential responses to warming conditions and nitrate pollution may modify charophyte diversity, which might be reflected in ecosystem performance, a matter of concern in vulnerable Mediterranean water bodies where these species co-occur.This study was supported by the Spanish Ministry of Economy and Competitiveness for research project CGL2014-54502-C2-1-P (including EC FEDER funding). Eric Puche is the holder of a grant (UV-INV-PREDOC16F1-383810) funded by the University of Valencia.Peer Reviewe

    Climate features or the composition of submerged vegetation? Which factor has a greater impact on the phytoplankton structure in temperate lakes?

    No full text
    This study compares the composition and biomass of phytoplankton assemblages of lakes with abundant vegetation dominated by (1) charophytes (Chara-lakes) and (2) angiosperms (Potamogeton-lakes). These two groups of submerged macrophytes effectively control the phytoplankton development in lakes, but differ in the feedback mechanisms involved. Despite increasing interest, the phytoplankton development in charophyte- and angiosperm-dominated lakes under different climatic circumstances remains poorly recognized. Each type of lakes was studied in two distant (>500 km apart) regions of Poland, characterized by distinctly different climate features (western – warmer, and north-eastern – cooler), with temperature differences corresponding to the predicted magnitude of the global warming-related temperature rise in the near future. Twelve lakes were selected for this study, three Chara- and three Potamogeton-lakes in each region. In addition to phytoplankton analysis, macrophytes and climatic conditions, water chemistry, and the use of land in the catchment area were studied. Although we expected that climatic differences would have greater impact on the structure of phytoplankton assemblage than that expected due to higher macrophyte biomass and lower nutrient availability in Chara- than in Potamogeton-lakes, multidimensional statistical analyses clearly distinguished between the two macrophyte types of lakes. Significantly lower values of the total phytoplankton biomass, and the biomass of diatoms and cyanobacteria occurred in Chara- vs Potamogeton-lakes. We therefore postulate that not only abundantly developed submerged macrophytes, but also the type of vegetation are important factors structuring phytoplankton development and by interacting with the physical and chemical characteristics of water show potential in mitigating the effects of climate change
    corecore