38 research outputs found

    Preparing a Personalized Meal by Using Soy, Cricket, and Egg Albumin Protein Based on 3D Printing

    Get PDF
    Recently, personalized meals and customized food design by means of 3D printing technology have been considered over traditional food manufacturing methods. This study examined the effects of different proteins (soy, cricket, and egg albumin protein) in two concentrations (3% and 5%) on rheological, textural, and 3D printing characteristics. The textural and microstructural properties of different formulations were evaluated and compared. The addition of soy and cricket protein induced an increase in yield stress (τ₀), storage modulus (G'), and loss modulus (G″) while egg albumin protein decreased these parameters. The textural analysis (back extrusion and force of extrusion) demonstrated the relationship between increasing the amount of protein in the formula with an improvement in consistency and index of viscosity. These values showed a straight correlation with the printability of fortified formulas. 3D printing of the different formulas revealed that soy and cricket proteins allow the targeting of complex geometry with multilayers

    Apo AIV and citrulline plasma concentrations in Short Bowel Syndrome patients: the influence of Short Bowel Anatomy

    Get PDF
    Introduction Parenteral nutrition (PN) dependence in short bowel syndrome (SBS) patients is linked to the functionality of the remnant small bowel (RSB). Patients may wean off PN following a period of intestinal adaptation that restores this functionality. Currently, plasma citrulline is the standard biomarker for monitoring intestinal functionality and adaptation. However, available studies reveal that the relationship the biomarker with the length and function of the RSB is arguable. Thus, having additional biomarkers would improve pointing out PN weaning. Aim By measuring concomitant changes in citrulline and the novel biomarker apolipoprotein AIV (Apo AIV), as well as taking into account the anatomy of the RSB, this exploratory study aims to a better understanding of the intestinal adaptation process and characterization of the SBS patients under PN. Methods Thirty four adult SBS patients were selected and assigned to adapted (aSBS) and non-adapted (nSBS) groups after reconstructive surgeries. Remaining jejunum and ileum lengths were recorded. The aSBS patients were either on an oral diet (ORAL group), those with intestinal insufficiency, or on oral and home parenteral nutrition (HPN group), those with chronic intestinal failure. Apo AIV and citrulline were analyzed in plasma samples after overnight fasting. An exploratory ROC analysis using citrulline as gold standard was performed. Results Biomarkers, Apo AIV and citrulline showed a significant correlation with RSBL in aSBS patients. In jejuno-ileocolic patients, only Apo AIV correlated with RSBL (rb = 0.54) and with ileum length (rb = 0.84). In patients without ileum neither biomarker showed any correlation with RSBL. ROC analysis indicated the Apo AIV cut-off value to be 4.6 mg /100 mL for differentiating between the aSBS HPN and ORAL groups. Conclusions Therefore, in addition to citrulline, Apo AIV can be set as a biomarker to monitor intestinal adaptation in SBS patients. As short bowel anatomy is shown to influence citrulline and Apo AIV plasma values, both biomarkers complement each other furnishing a new insight to manage PN dependence

    Edible Insect Consumption for Human and Planetary Health: A Systematic Review

    Get PDF
    This systematic review aimed to examine the health outcomes and environmental impact of edible insect consumption. Following PRISMA-P guidelines, PubMed, Medline ProQuest, and Cochrane Library databases were searched until February 2021. Twenty-five articles met inclusion criteria: twelve animal and six human studies (randomized, non-randomized, and crossover control trials), and seven studies on sustainability outcomes. In animal studies, a supplement (in powdered form) of 0.5 g/kg of glycosaminoglycans significantly reduced abdominal and epididymal fat weight (5–40% and 5–24%, respectively), blood glucose (10–22%), and total cholesterol levels (9–10%), and a supplement of 5 mg/kg chitin/chitosan reduced body weight (1–4%) and abdominal fat accumulation (4%) versus control diets. In other animal studies, doses up to 7–15% of edible insect inclusion level significantly improved the live weight (9–33%), reduced levels of triglycerides (44%), cholesterol (14%), and blood glucose (8%), and increased microbiota diversity (2%) versus control diet. In human studies, doses up to 7% of edible insect inclusion level produced a significant improvement in gut health (6%) and reduction in systemic inflammation (2%) versus control diets and a significant increase in blood concentrations of essential and branched-chain amino acids and slowing of digestion (40%) versus whey treatment. Environmental indicators (land use, water footprint, and greenhouse gas emissions) were 40–60% lower for the feed and food of edible insects than for traditional animal livestock. More research is warranted on the edible insect dose responsible for health effects and on environmental indicators of edible insects for human nutrition. This research demonstrates how edible insects can be an alternative protein source not only to improve human and animal nutrition but also to exert positive effects on planetary health
    corecore