28 research outputs found

    Purification and Characterization of a Mitogenic Lectin from Cephalosporium, a Pathogenic Fungus Causing Mycotic Keratitis

    Get PDF
    Ophthalmic mycoses caused by infectious fungi are being recognized as a serious concern since they lead to total blindness. Cephalosporium is one amongst several opportunistic fungal species implicated in ophthalmic infections leading to mycotic keratitis. A mitogenic lectin has been purified from the mycelia of fungus Cephalosporium, isolated from the corneal smears of a keratitis patient. Cephalosporium lectin (CSL) is a tetramer with subunit mass of 14ā€‰kDa, agglutinates human A, B, and O erythrocytes, and exhibits high affinity for mucin compared to fetuin and asialofetuin but does not bind to simple sugars indicating its complex sugar specificity. CSL showed strong binding to normal human peripheral blood mononuclear cells (PBMCs) to elicit mitogenic activity. The sugar specificity of the lectin and its interaction with PBMCs to exhibit mitogenic effect indicate its possible role in adhesion and infection process of Cephalosporium

    Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    Get PDF
    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (GalĪ²1-3GalNAcĪ±1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent

    Prostate Apoptosis Response-4 (Par-4): A Novel Target in Pyronaridine-Induced Apoptosis in Glioblastoma (GBM) Cells

    No full text
    Glioblastoma (GBM) is an aggressive form of brain tumor with a median survival of approximately 12 months. With no new drugs in the last few decades and limited success in clinics for known therapies, drug repurposing is an attractive choice for its treatment. Here, we examined the efficacy of pyronaridine (PYR), an anti-malarial drug in GBM cells. PYR induced anti-proliferative activity in GBM cells with IC50 ranging from 1.16 to 6.82 ĀµM. Synergistic activity was observed when PYR was combined with Doxorubicin and Ritonavir. Mechanistically, PYR triggered mitochondrial membrane depolarization and enhanced the ROS levels causing caspase-3 mediated apoptosis. PYR significantly decreased markers associated with proliferation, EMT, hypoxia, and stemness and upregulated the expression of E-cadherin. Interestingly, PYR induced the expression of intracellular as well as secretory Par-4, a tumor suppressor in GBM cells, which was confirmed using siRNA. Notably, Par-4 levels in plasma samples of GBM patients were significantly lower than normal healthy volunteers. Thus, our study demonstrates for the first time that PYR can be repurposed against GBM with a novel mechanism of action involving Par-4. Herewith, we discuss the role of upregulated Par-4 in a highly interconnected signaling network thereby advocating its importance as a therapeutic target

    Oncostatin-M Differentially Regulates Mesenchymal and Proneural Signature Genes in Gliomas via STAT3 Signaling

    No full text
    Glioblastoma (GBM), the most malignant of the brain tumors is classified on the basis of molecular signature genes using TCGA data into four subtypes- classical, mesenchymal, proneural and neural. The mesenchymal phenotype is associated with greater aggressiveness and low survival in contrast to GBMs enriched with proneural genes. The proinflammatory cytokines secreted in the microenvironment of gliomas play a key role in tumor progression. The study focused on the role of Oncostatin-M (OSM), an IL-6 family cytokine in inducing mesenchymal properties in GBM. Analysis of TCGA and REMBRANDT data revealed that expression of OSMR but not IL-6R or LIFR is upregulated in GBM and has negative correlation with survival. Amongst the GBM subtypes, OSMR level was in the order of mesenchymal > classical > neural > proneural. TCGA data and RT-PCR analysis in primary cultures of low and high grade gliomas showed a positive correlation between OSMR and mesenchymal signature genes-YKL40/CHI3L1, fibronectin and vimentin and a negative correlation with proneural signature genes-DLL3, Olig2 and BCAN. OSM enhanced transcript and protein level of fibronectin and YKL-40 and reduced the expression of Olig2 and DLL3 in GBM cells. OSM-regulated mesenchymal phenotype was associated with enhanced MMP-9 activity, increased cell migration and invasion. Importantly, OSM induced mesenchymal markers and reduced proneural genes even in primary cultures of grade-III glioma cells. We conclude that OSM-mediated signaling contributes to aggressive nature associated with mesenchymal features via STAT3 signaling in glioma cells. The data suggest that OSMR can be explored as potential target for therapeutic intervention

    Rhizoctonia bataticola lectin (RBL) induces caspase-8-mediated apoptosis in human T-cell leukemia cell lines but not in normal CD3 and CD34 positive cells.

    Get PDF
    We have previously demonstrated immunostimulatory activity of a fungal lectin, Rhizoctonia bataticola lectin (RBL), towards normal human peripheral blood mononuclear cells. The present study aimed to explore the anticancer activities of RBL using human leukemic T-cell lines, Molt-4, Jurkat and HuT-78. RBL exhibited significant binding (>90%) to the cell membrane that was effectively inhibited by complex glycoproteins such as mucin (97% inhibition) and asialofetuin (94% inhibition) but not simple sugars such as N-acetyl-D-galactosamine, glucose and sucrose. RBL induced a dose and time dependent inhibition of proliferation and induced cytotoxicity in the cell lines. The percentage of apoptotic cells, as determined by hypodiploidy, was 33% and 42% in Molt-4 and Jurkat cells, respectively, compared to 3.11% and 2.92% in controls. This effect was associated with a concomitant decrease in the G0/G1 population. Though initiator caspase-8 and -9 were activated upon exposure to RBL, inhibition of caspase-8 but not caspase-9 rescued cells from RBL-induced apoptosis. Mechanistic studies revealed that RBL induced cleavage of Bid, loss of mitochondrial membrane potential and activation of caspase-3. The expression of the anti-apoptotic proteins Bcl-2 and Bcl-X was down regulated without altering the expression of pro-apoptotic proteins--Bad and Bax. In contrast to leukemic cells, RBL did not induce apoptosis in normal PBMC, isolated CD3+ve cells and undifferentiated CD34+ve hematopoietic stem and progenitor cells (HSPCs). The findings highlight the differential effects of RBL on transformed and normal hematopoietic cells and suggest that RBL may be explored for therapeutic applications in leukemia

    TNF-Ī± and IFN-Ī³ Together Up-Regulates Par-4 Expression and Induce Apoptosis in Human Neuroblastomas

    No full text
    The objective of this study was to examine the combined effect of Interferon-gamma (IFN-Ī³) and Tumor Necrosis factor-alpha (TNF-Ī±) on cytotoxicity and expression of prostate apoptosis response-4 (Par-4) and Par-4 interacting proteins B-cell lymphoma (Bcl-2), nuclear factor kappa-light-chain-enhancer of activated B cells/p65 subunit (NF-ĪŗB/p65), Ak mouse strain thymoma (Akt) in human neuroblastoma (NB) cells. Materials and methods included human neuroblastoma cell lines-SK-N-MC, SK-N-SH, and SH-SY5Y, which were treated with IFN-Ī³ and TNF-Ī± individually, or in combination, and were assessed for viability by tetrazolium (MTT) assay. Apoptosis was monitored by hypodiploid population (by flow cytometry), DNA fragmentation, Poly (ADP-ribose) polymerase (PARP) cleavage, and caspase-8 activity. Transcript level of Par-4 was measured by RT-PCR. Protein levels of Par-4 and suppressor of cytokine signaling 3 (SOCS-3) were assessed by immunoblotting. Cellular localization of Par-4 and p65 was examined by immunofluorescence. Unbiased transcript analysis for IFN-Ī³, TNF-Ī±, and Par-4 were analyzed from three independent clinical datasets from neuroblastoma patients. In terms of results, SK-N-MC cells treated with a combination of, but not individually with, IFN-Ī³ and TNF-Ī± induced apoptosis characterized by hypodiploidy, DNA fragmentation, PARP cleavage, and increased caspase-8 activity. Apoptosis was associated with up-regulation of Par-4 mRNA and protein expression. Immunofluorescence studies revealed that Par-4 was localized exclusively in cytoplasm in SK-N-MC cells cultured for 24 h. but showed nuclear localization at 48 h. Treatment with IFN-Ī³ and TNF-Ī± together enhanced the intensity of nuclear Par-4. In gene expression, data from human neuroblastoma patients, levels of IFN-Ī³, and TNF-Ī± have strong synergy with Par-4 expression and provide good survival advantage. The findings also demonstrated that apoptosis was associated with reduced level of pro-survival proteinsā€“Bcl-2 and Akt and NF-ĪŗB/p65. Furthermore, the apoptotic effect induced by IFN-Ī³-induced Signal Transducer and Activator of Transcription-1(STAT-1), and could be due to down-regulation of suppressor of cytokine signaling-3 (SOCS3). The study concludes that a combinatorial approach using IFN-Ī³ and TNF-Ī± can be explored to maximize the effect in chemotherapy in neuroblastoma, and implies a role for Par-4 in the process

    Effect of caspase-8 inhibition on RBL-induced apoptosis.

    No full text
    <p>Molt-4 (A) and Jurkat cells (B) were treated with RBL(5 Āµg/ml) for 12 h in the presence or absence of caspase inhibitors(40 ĀµM) zVAD-FMK (pan caspase inhibitor), zIETD-FMK (caspase-8 inhibitor), or zLEHD-FMK (caspase-9 inhibitor) and viability was assessed by MTT assay. The graphs depict meanĀ±SE values from three independent experiments. *p value <0.05 in comparison with untreated controls. Molt-4 (C) and Jurkat (D) cells were treated with RBL (5 Āµg/ml) for 12 h in the presence or absence of caspase-8 inhibitor (zIETD-FMK) and caspase-3 activation was assessed using flow cytometry. The overlay depicts profile of untreated cells (black line), cells pretreated with caspase-3 inhibitor followed by RBL exposure (red line) and cells treated with RBL alone (blue line).</p

    RBL induces apoptosis of Molt-4 and Jurkat cells.

    No full text
    <p>(A) Molt-4 cells were treated with RBL (5 Āµg/ml) for 6, 12 and 24 h followed by Annexin- V-FITC and PI staining. The X-axis depicts Annexin-V positive cells and Y- axis depicts PI positive cells. The numbers in each quadrant represent percent positive cells. Dot plots are representative of three similar experiments. (B) The graph represents % apoptosis (Annexin-V-positive cells) meanĀ±SE of three independent experiments. *p<0.05 indicates significant difference between treated and untreated cells. (C) Whole cell lysates of Molt-4 and Jurkat cells were exposed to RBL (1.25 to 5 Āµg/ml) for 24 h and probed with anti-PARP antibody. The blot shows total and cleaved PARP. The data is representative of two similar experiments.</p
    corecore