761 research outputs found

    Nickel hydrogen bipolar battery electrode design

    Get PDF
    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented

    Bipolar Nickel-hydrogen Batteries for Aerospace Applications

    Get PDF
    A bipolar nickel-hydrogen battery which effectively addresses all key requirements for a spacecraft power system, including long-term reliability and low mass, is discussed. The design of this battery is discussed in the context of system requirements and nickel-hydrogen battery technology in general. To achieve the ultimate goal of an aerospace application of a bipolar Ni-H2 battery several objectives must be met in the design and development of the system. These objectives include: maximization of reliability and life; high specific energy and energy density; reasonable cost of manufacture, test, and integration; and ease in scaling for growth in power requirements. These basic objectives translate into a number of specific design requirements, which are discussed

    Wave Energy: a Pacific Perspective

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by The Royal Society and can be found at: http://rsta.royalsocietypublishing.org/.This paper illustrates the status of wave energy development in Pacific Rim countries by characterizing the available resource and introducing the region‟s current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region‟s vision of the future of wave energy

    Steady state properties of a mean field model of driven inelastic mixtures

    Full text link
    We investigate a Maxwell model of inelastic granular mixture under the influence of a stochastic driving and obtain its steady state properties in the context of classical kinetic theory. The model is studied analytically by computing the moments up to the eighth order and approximating the distributions by means of a Sonine polynomial expansion method. The main findings concern the existence of two different granular temperatures, one for each species, and the characterization of the distribution functions, whose tails are in general more populated than those of an elastic system. These analytical results are tested against Monte Carlo numerical simulations of the model and are in general in good agreement. The simulations, however, reveal the presence of pronounced non-gaussian tails in the case of an infinite temperature bath, which are not well reproduced by the Sonine method.Comment: 23 pages, 10 figures, submitted for publicatio

    Velocity fluctuations in a one dimensional Inelastic Maxwell model

    Full text link
    We consider the velocity fluctuations of a system of particles described by the Inelastic Maxwell Model. The present work extends the methods, previously employed to obtain the one-particle velocity distribution function, to the study of the two particle correlations. Results regarding both the homogeneous cooling process and the steady state driven regime are presented. In particular we obtain the form of the pair correlation function in the scaling region of the homogeneous cooling process and show that some of its moments diverge. This fact has repercussions on the behavior of the energy fluctuations of the model.Comment: 16 pages, 1 figure, to be published on Journal of Statistical Mechanics: Theory and Experiment

    Non-Gaussian velocity distributions in excited granular matter in the absence of clustering

    Full text link
    The velocity distribution of spheres rolling on a slightly tilted rectangular two dimensional surface is obtained by high speed imaging. The particles are excited by periodic forcing of one of the side walls. Our data suggests that strongly non-Gaussian velocity distributions can occur in dilute granular materials even in the absence of significant density correlations or clustering. When the surface on which the particles roll is tilted further to introduce stronger gravitation, the collision frequency with the driving wall increases and the velocity component distributions approach Gaussian distributions of different widths.Comment: 4 pages, 5 figures. Additional information at http://physics.clarku.edu/~akudrolli/nls.htm

    Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics

    Full text link
    It has been recently shown (Fouxon et al. 2007) that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. This work reports molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review

    High Contrast Imaging in the Visible: First Experimental Results at the Large Binocular Telescope

    Full text link
    In February 2014, the SHARK-VIS (System for High contrast And coronography from R to K at VISual bands) Forerunner, a high contrast experimental imager operating at visible wavelengths, was installed at LBT (Large Binocular Telescope). Here we report on the first results obtained by recent on-sky tests. These results show the extremely good performance of the LBT ExAO (Extreme Adaptive Optics) system at visible wavelengths, both in terms of spatial resolution and contrast achieved. Similarly to what was done by (Amara et al. 2012), we used the SHARK-VIS Forerunner data to quantitatively assess the contrast enhancement. This is done by injecting several different synthetic faint objects in the acquired data and applying the ADI (angular differential imaging) technique. A contrast of the order of 5×1055 \times 10^{-5} is obtained at 630 nm for angular separations from the star larger than 100 mas. These results are discussed in light of the future development of SHARK-VIS and compared to those obtained by other high contrast imagers operating at similar wavelengths.Comment: Astronomical Journal - Accepted for publicatio

    Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited

    Full text link
    We revisit the model of a Brownian particle in a heat bath submitted to an actively controlled force proportional to the velocity that leads to thermal noise reduction (cold damping). We investigate the influence of the continuous feedback on the fluctuations of the total entropy production and show that the explicit expression of the detailed fluctuation theorem involves different dynamics and observables in the forward and backward processes. As an illustration, we study the analytically solvable case of a harmonic oscillator and calculate the characteristic function of the entropy production in a nonequilibrium steady state. We then determine the corresponding large deviation function which results from an unusual interplay between 'boundary' and 'bulk' contributions.Comment: 16 pages, 5 figures. References 9,10,13,14,15 added. A few changes in the text. Accepted for publication in J. Stat. Mec
    corecore