27 research outputs found

    Cognitive‐behavioral therapy in the time of coronavirus : clinician tips for working with eating disorders via telehealth when face‐to‐face meetings are not possible

    Get PDF
    Objective The coronavirus pandemic has led to a dramatically different way of working for many therapists working with eating disorders, where telehealth has suddenly become the norm. However, many clinicians feel ill equipped to deliver therapy via telehealth, while adhering to evidence‐based interventions. This article draws together clinician experiences of the issues that should be attended to, and how to address them within a telehealth framework. Method Seventy clinical colleagues of the authors were emailed and invited to share their concerns online about how to deliver cognitive‐behavioral therapy for eating disorders (CBT‐ED) via telehealth, and how to adapt clinical practice to deal with the problems that they and others had encountered. After 96 hr, all the suggestions that had been shared by 22 clinicians were collated to provide timely advice for other clinicians. Results A range of themes emerged from the online discussion. A large proportion were general clinical and practical domains (patient and therapist concerns about telehealth; technical issues in implementing telehealth; changes in the environment), but there were also specific considerations and clinical recommendations about the delivery of CBT‐ED methods. Discussion Through interaction and sharing of ideas, clinicians across the world produced a substantial number of recommendations about how to use telehealth to work with people with eating disorders while remaining on track with evidence‐based practice. These are shared to assist clinicians over the period of changed practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Skip Ring Topology in FAST Failure Detection Service

    No full text

    Adult-limited dietary restriction slows gompertzian aging in Caenorhabditis elegans

    No full text
    Dietary restriction (DR) delays the onset of age-related deterioration and extends the life span in a variety of model organisms. In many species, age changes in mortality obey the Gompertz equation, which describes an exponential increase with age in age-specific mortality rate. Recently, this model has been used in fruitflies and rodents to investigate the mechanism by which DR reduces adult mortality. We report that food restriction imposed by axenic culture reduces the exponential increase of age-specific mortality of Caenorhabditis elegans. Furthermore, the life span appears largely independent of nutritional status during development, as shown by shifting worms to different food concentrations shortly before adulthood. When DR was exerted after reproduction, a smaller reduction in Gompertzian aging was seen. Thus, the demographic changes exerted by DR in C. elegans resemble those seen in rats, yet are different to those seen in Drosophila and mice
    corecore