103 research outputs found

    Meteoritic Material Recovered from the 07 March 2018 Meteorite Fall into the Olympic Coast National Marine Sanctuary

    Get PDF
    On 07 March 2018 at 20:05 local time (08 March 03:05 UTC), a dramatic meteor occurred over Olympic Coast National Marine Sanctuary (OCNMS) off of the Washington state coast (OCNMS fall, henceforth). Data to include seismometry (from both on-shore and submarine seismometers), weather radar imagery (Figure 1), and a moored weather buoy, were used to accurately identify the fall site. The site was visited by the exploration vessel E/V Nautilus (Ocean Exploration Trust) on 01 July 2018 [1] and by the research vessel R/V Falkor (Schmidt Ocean Institute) from 03-06 June 2019. Remotely operated vehicles (ROVs) from both vessels were used to search for meteorites and sample seafloor sediments. These expeditions performed the first attempts to recover meteorites from a specific observed fall in the open ocean. Analysis of weather radar data indicates that this fall was unusually massive and featured meteorites of unusually high mechanical toughness, such that large meteorites were disproportionately produced compared to other meteorite falls (Figure 2)[2-4]. We report the recovery of many (>100) micrometeorite-sized melt spherules and other fragments, and one small (~1mm3 ) unmelted meteorite fragment identified to date. Approximately 80% of the fragments were recovered from a single sample, collected from a round pit in the seafloor sediment. Melt spherules are almost exclusively type I iron-rich spherules with little discernible oxidation. Analyses are currently underway to attempt to answer the primary science question by identifying the parent meteorite type. Also, differences in the number and nature of samples collected by Nautilus and Falkor reveal a distinct loss rate to oxidation over the 15 months following the fall that is useful to inform future recovery efforts

    Physical Mechanism of the d->d+is Transition

    Full text link
    We discuss the basic physical mechanism of the d->d+is transition, which is the currently accepted explanation for the results of tunneling experiments into abab planes. Using the first-order perturbation theory, we show that the zero-bias states drive the transition. We present various order-of-magnitude estimates and consistency checks that support this picture.Comment: 7 pages, 2 figure

    Altered development of the brain after focal herpesvirus infection of the central nervous system

    Get PDF
    Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis

    Dual Band Deep Ultraviolet AlGaN Photodetectors

    Get PDF
    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation

    Laser Ablation Mass Spectrometer (LAMS) as a Standoff Analyzer in Space Missions for Airless Bodies

    Get PDF
    A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies

    Introducing SpatialGridBuilder: A new system for creating geo-coded datasets

    Get PDF
    Researchers in the conflict research community have become increasingly aware that we can no longer depend on state-aggregated data. Numerous factors at the substate level affect the nature of human interactions, so if we really want to understand conflict, we need to find more appropriate units of analysis. However, while many conflict researchers have realized this, actually taking the next step and performing data analysis on spatial data grids has remained a rather elusive goal for many because of the difficulty of learning the new techniques to perform such analyses. This paper introduces SpatialGridBuilder, a new, freely available, open-source system with the goal of empowering conflict researchers with no background in GIS methods to start their own spatial analyses. SpatialGridBuilder allows the researcher to: (a) create entirely new spatial datasets, based on the needs of their own research; (b) import their own spatial data; (c) easily add a range of important variables to the datasets, including commonly used conflict variables, plus new variables that have not been presented before; and (d) visualize graphical renderings of this data. Having done this, SpatialGridBuilder will then export the dataset for the researcher to analyse using conventional statistical methods. This article introduces the new program, and demonstrates how it can be used to set up such a statistical analysis. It also shows how different results can be achieved by building grids of different resolutions, thereby encouraging researchers to choose grid resolutions appropriate to their research questions and data. The article also introduces a novel means of determining infrastructure complexity, using Google maps

    X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    Get PDF
    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields

    Vortex Flow and Transverse Flux Screening at the Bose Glass Transition

    Get PDF
    We investigate the vortex phase diagram in untwinned YBaCuO single crystals with columnar defects. These randomly distributed defects, produced by heavy ion irradiation, are expected to induce a ``Bose Glass'' phase of localized vortices characterized by a vanishing resistance and a Meissner effect for magnetic fields transverse to the defect axis. We directly observe the transverse Meissner effect using an array of Hall probe magnetometers. As predicted, the Meissner state breaks down at temperatures Ts that decrease linearly with increasing transverse magnetic field. However, Ts falls well below the conventional melting temperature Tm determined by a vanishing resistivity, suggesting an intermediate regime where flux lines are effectively localized even when rotated off the columnar defects.Comment: 15 pages, 5 figure

    In-situ Optimized Substrate Witness Plates: Ground Truth for Key Processes on the Moon and Other Planets

    Full text link
    Future exploration efforts of the Moon, Mars and other bodies are poised to focus heavily on persistent and sustainable survey and research efforts, especially given the recent interest in a long-term sustainable human presence at the Moon. Key to these efforts is understanding a number of important processes on the lunar surface for both scientific and operational purposes. We discuss the potential value of in-situ artificial substrate witness plates, powerful tools that can supplement familiar remote sensing and sample acquisition techniques and provide a sustainable way of monitoring processes in key locations on planetary surfaces while maintaining a low environmental footprint. These tools, which we call Biscuits, can use customized materials as wide ranging as zircon-based spray coatings to metals potentially usable for surface structures, to target specific processes/questions as part of a small, passive witness plate that can be flexibly placed with respect to location and total time duration. We examine and discuss unique case studies to show how processes such as water presence/transport, presence and contamination of biologically relevant molecules, solar activity related effects, and other processes can be measured using Biscuits. Biscuits can yield key location sensitive, time integrated measurements on these processes to inform scientific understanding of the Moon and enable operational goals in lunar exploration. While we specifically demonstrate this on a simulated traverse and for selected examples, we stress all groups interested in planetary surfaces should consider these adaptable, low footprint and highly informative tools for future exploration.Comment: Accepted to Earth and Space Science, Will be updated upon publicatio

    Wholesale pricing in a small open economy

    Get PDF
    This paper addresses the empirical analysis of wholesale profit margins using data of the Dutch wholesale sector, 1986. At the heart of the analysis is the typical nature of wholesale production: wholesalers do not produce a tangible product, but offer a service capacity. This has an immediate impact on the identification, interprelation and measurement of determinants of profit variations. A model is set up to explain variations in wholesale profit margins, which is inspired by two widely applied approaches to industry pricing: the behavioural mark-up model and the marginalist price-cost model
    • …
    corecore