47 research outputs found

    Physical Mechanism of the d->d+is Transition

    Full text link
    We discuss the basic physical mechanism of the d->d+is transition, which is the currently accepted explanation for the results of tunneling experiments into abab planes. Using the first-order perturbation theory, we show that the zero-bias states drive the transition. We present various order-of-magnitude estimates and consistency checks that support this picture.Comment: 7 pages, 2 figure

    The Role of NAD\u3csup\u3e+\u3c/sup\u3e and NAD\u3csup\u3e+\u3c/sup\u3e-Boosting Therapies in Inflammatory Response by IL-13

    Get PDF
    The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson’s disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13

    Laser Ablation Mass Spectrometer (LAMS) as a Standoff Analyzer in Space Missions for Airless Bodies

    Get PDF
    A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies

    The PI Launchpad: Expanding the base of potential Principal Investigators across space sciences

    Full text link
    The PI Launchpad attempts to provide an entry level explanation of the process of space mission development for new Principal Investigators (PIs). In particular, PI launchpad has a focus on building teams, making partnerships, and science concept maturity for a space mission concept, not necessarily technical or engineering practices. Here we briefly summarize the goals of the PI Launchpad workshops and present some results from the workshops held in 2019 and 2021. The workshop attempts to describe the current process of space mission development (i.e. space-based telescopes and instrument platforms, planetary missions of all types, etc.), covering a wide range of topics that a new PI may need to successfully develop a team and write a proposal. It is not designed to replace real experience but to provide an easily accessible resource for potential PIs who seek to learn more about what it takes to submit a space mission proposal, and what the first steps to take can be. The PI Launchpad was created in response to the high barrier to entry for early career or any scientist who is unfamiliar with mission design. These barriers have been outlined in several recent papers and reports, and are called out in recent space science Decadal reports.Comment: 7 Pages, 2 Figure, Accepted to Frontier

    Vortex Flow and Transverse Flux Screening at the Bose Glass Transition

    Get PDF
    We investigate the vortex phase diagram in untwinned YBaCuO single crystals with columnar defects. These randomly distributed defects, produced by heavy ion irradiation, are expected to induce a ``Bose Glass'' phase of localized vortices characterized by a vanishing resistance and a Meissner effect for magnetic fields transverse to the defect axis. We directly observe the transverse Meissner effect using an array of Hall probe magnetometers. As predicted, the Meissner state breaks down at temperatures Ts that decrease linearly with increasing transverse magnetic field. However, Ts falls well below the conventional melting temperature Tm determined by a vanishing resistivity, suggesting an intermediate regime where flux lines are effectively localized even when rotated off the columnar defects.Comment: 15 pages, 5 figure

    Glucocortiocoid Treatment of MCMV Infected Newborn Mice Attenuates CNS Inflammation and Limits Deficits in Cerebellar Development

    Get PDF
    Infection of the developing fetus with human cytomegalovirus (HCMV) is a major cause of central nervous system disease in infants and children; however, mechanism(s) of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV) results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC) proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ) in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV

    Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    No full text
    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented

    The Role of NAD<sup>+</sup> and NAD<sup>+</sup>-Boosting Therapies in Inflammatory Response by IL-13

    No full text
    The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson’s disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13
    corecore