190 research outputs found

    Processing and characterization of polystyrene nanocomposites based on CoAl layered double hydroxide

    Get PDF
    AbstractThe present work deals with the development of polystyrene (PS) nanocomposites through solvent blending technique with diverse contents of modified CoAl layered double hydroxide (LDH). The prepared PS as well as PS/CoAl LDH (1–7 wt.%) nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), rheological analysis, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The XRD results suggested the formation of exfoliated structure, while TEM images clearly indicated the intercalated morphology of PS nanocomposites at higher loading. The presence of various functional groups in the CoAl LDH and PS/CoAl LDH nanocomposites was verified by FTIR analysis. TGA data confirmed that the thermal stability of PS composites was enhanced significantly as compared to pristine PS. While considering 15% weight loss as a reference point, it was found that the thermal degradation (Td) temperature increased up to 28.5 °C for PS nanocomposites prepared with 7 wt.% CoAl LDH loading over pristine PS. All the nanocomposite samples displayed superior glass transition temperature (Tg), in which PS nanocomposites containing 7 wt.% LDH showed about 5.5 °C higher Tg over pristine PS. In addition, the kinetics for thermal degradation of the composites was studied using Coats-Redfern method. The Criado method was ultimately used to evaluate the decomposition reaction mechanism of the nanocomposites. The complex viscosity and rheological muduli of nanocomposites were found to be higher than that of pristine PS when the frequency increased from 0.01 to 100 s−1

    Harris-Hessian Algorithm for Coin Apprehension

    Get PDF
    Abstract-Coins square measure integral a part of our day to day life. We tend to use coins everyplace like grocery market, banks, buses, trains etc. Therefore it is a basic want that coin is recognized and counted. The target of this paper is to classify the Indian coins of different denomination discharged recently. The objective is to notice the Indian coins and count its total worth. The system is projected to design coin recognition by applying Advanced HarrisHessian Algorithm, supported the parameters of Indian coins such as size, shape, weight, surface and so on . This paper presents a coin recognition methodology with rotation invariance. For circle detection use Hough Transform

    Fibronectin Contributes to a Braf Inhibitor-Driven Invasive Phenotype in Thyroid Cancer Through EGR1, Which Can Be Blocked by Inhibition of ERK1/2

    Get PDF
    Mutations in BRAF are common in advanced papillary and anaplastic thyroid cancer (PTC and ATC). However, patients with BRAF-mutant PTC currently lack therapies targeting this pathway. Despite the approved combination of BRAF and MEK1/2 inhibition for patients with BRAF-mutant ATC, these patients often progress. Thus, we screened a panel of BRAF-mutant thyroid cancer cell lines to identify new therapeutic strategies. We showed that thyroid cancer cells resistant to BRAF inhibition (BRAFi) exhibit an increase in invasion and a proinvasive secretome in response to BRAFi. Using reverse-phase protein array (RPPA), we identified a nearly 2-fold increase in expression of the extracellular matrix protein, fibronectin, in response to BRAFi treatment, and a corresponding 1.8- to 3.0-fold increase in fibronectin secretion. Accordingly, the addition of exogenous fibronectin phenocopied the BRAFi-induced increase in invasion while depletion of fibronectin in resistant cells resulted in loss of increased invasion. We further showed that BRAFi-induced invasion can be blocked by inhibition of ERK1/2. In a BRAFi-resistant patient-derived xenograft model, we found that dual inhibition of BRAF and ERK1/2 slowed tumor growth and decreased circulating fibronectin. Using RNA sequencing, we identified EGR1 as a top downregulated gene in response to combined BRAF/ERK1/2 inhibition, and we further showed that EGR1 is necessary for a BRAFi-induced increase in invasion and for induction of fibronectin in response to BRAFi. Implications: Together, these data show that increased invasion represents a new mechanism of resistance to BRAF inhibition in thyroid cancer that can be targeted with an ERK1/2 inhibitor

    Study on The Application of Processed Municipal Solid Waste Ash for Sustainable Construction Materials

    Get PDF
    The total amount of solid trash produced in India is 160038.9 TPD, according to the Annual Report on Solid Waste Management (2020–21), CPCB, Delhi. Out of which, Tamil Nadu created 13422 TPD of solid waste, of which 9430.35 TPD was processed, and 2301.04 TPD was landfilled. The researchers have been forced to look at alternative processes and materials for the manufacturing of construction materials utilizing processed municipal solid waste ash (PMSWA) due to the increased demand for environmentally friendly and sustainable products. This research work focused on the replacement of fine aggregate by (0%, 10%, 30% and 50%) Processed Municipal Solid Waste Ash (PMSWA) in the Solid Blocks. This research enhances the sustainable material development in the construction industry. SEM study showed that specimens with CTR do not have any cracking on their fracture surfaces, unlike samples without CTR. This study examines the material’s physical characteristics, including its mechanical attributes like compressive strength and flexural strength as well as its chemical composition using XRF. It demonstrates that the substitution or addition of PMSWA to construction materials is appropriate, cost-effective, and safe

    Dramatic Co-Activation of WWOX/WOX1 with CREB and NF-κB in Delayed Loss of Small Dorsal Root Ganglion Neurons upon Sciatic Nerve Transection in Rats

    Get PDF
    BACKGROUND:Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. METHODOLOGY/PRINCIPAL FINDINGS:Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-kappaB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-kappaB (40-65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-kappaB. WOX1 directly activated NF-kappaB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. CONCLUSIONS/SIGNIFICANCE:Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-kappaB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-kappaB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury

    Targeted therapy against Bcl-2-related proteins in breast cancer cells

    Get PDF
    INTRODUCTION: Bcl-2 and Bcl-xL confer resistance to apoptosis, thereby reducing the effectiveness of chemotherapy. We examined the relationship between the expression of Bcl-2 and Bcl-xL and chemosensitivity of breast cancer cells, with the aim of developing specific targeted therapy. METHODS: Four human breast cancer cell lines were examined, and the effects of antisense (AS) Bcl-2 and AS Bcl-xL phosphorothioate oligodeoxynucleotides (ODNs) on chemosensitivity were tested in vitro and in vivo. Chemosensitivity was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay, and the antitumor effect was assessed in vivo by the success of xenograft transplantation into athymic mice. RESULTS: Treatment with AS Bcl-2 and Bcl-xL ODNs resulted in a sequence-specific decrease in protein expression, compared with controls. Treatment of BT-474, ZR-75-1, and MDA-MB-231 cells with AS Bcl-2 increased chemosensitivity to doxorubicin (DOX), mitomycin C (MMC), paclitaxel (TXL), and docetaxel (TXT). Transfection of the Bcl-2 gene into MDA-MB-453 cells decreased sensitivity to DOX and MMC. Treatment of MDA-MB-231, BT-474, and ZR-75-1 cells with AS Bcl-xL increased chemosensitivity to DOX, MMC and taxanes to a smaller extent than AS Bcl-2. This occurred in the setting of increased Bax and cleaved poly(ADP-ribose) polymerase, as well as decreased Bcl-2 and pAkt. AS Bcl-2 ODNs induced splenomegaly in association with increased serum IL-12, which was attenuated by methylation of the CpG motifs of AS Bcl-2; however, methylated CpG failed to negate the increased antitumor effect of AS Bcl-2. Bcl-2 and Bcl-xL, to a smaller extent, are major determinants of chemosensitivity in breast cancer cells. CONCLUSION: Targeted therapy against Bcl-2 protein with the use of AS ODNs might enhance the effects of chemotherapy in patients with breast cancer

    Retroviral expression of a kinase-defective IGF-I receptor suppresses growth and causes apoptosis of CHO and U87 cells in-vivo

    Get PDF
    BACKGROUND: Phosphatidylinositol-3,4,5-triphosphate (PtdInsP3) signaling is elevated in many tumors due to loss of the tumor suppressor PTEN, and leads to constitutive activation of Akt, a kinase involved in cell survival. Reintroduction of PTEN in cells suppresses transformation and tumorigenicity. While this approach works in-vitro, it may prove difficult to achieve in-vivo. In this study, we investigated whether inhibition of growth factor signaling would have the same effect as re-expression of PTEN. METHODS: Dominant negative IGF-I receptors were expressed in CHO and U87 cells by retroviral infection. Cell proliferation, transformation and tumor formation in athymic nude mice were assessed. RESULTS: Inhibition of IGF-IR signaling in a CHO cell model system by expression of a kinase-defective IGF-IR impairs proliferation, transformation and tumor growth. Reduction in tumor growth is associated with an increase in apoptosis in-vivo. The dominant-negative IGF-IRs also prevented growth of U87 PTEN-negative glioblastoma cells when injected into nude mice. Injection of an IGF-IR blocking antibody αIR3 into mice harboring parental U87 tumors inhibits tumor growth and increases apoptosis. CONCLUSION: Inhibition of an upstream growth factor signal prevents tumor growth of the U87 PTEN-deficient glioma to the same extent as re-introduction of PTEN. This result suggests that growth factor receptor inhibition may be an effective alternative therapy for PTEN-deficient tumors

    Downregulation of uPAR and Cathepsin B Induces Apoptosis via Regulation of Bcl-2 and Bax and Inhibition of the PI3K/Akt Pathway in Gliomas

    Get PDF
    Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes.In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU)-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results.In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells

    Comparative study of classification algorithms using molecular descriptors in toxicological databases

    Get PDF
    The rational development of new drugs is a complex and expensive process, comprising several steps. Typically, it starts by screening databases of small organic molecules for chemical structures with potential of binding to a target receptor and prioritizing the most promising ones. Only a few of these will be selected for biological evaluation and further refinement through chemical synthesis. Despite the accumulated knowledge by pharmaceutical companies that continually improve the process of finding new drugs, a myriad of factors affect the activity of putative candidate molecules in vivo and the propensity for causing adverse and toxic effects is recognized as the major hurdle behind the current "target-rich, lead-poor" scenario. In this study we evaluate the use of several Machine Learning algorithms to find useful rules to the elucidation and prediction of toxicity using ID and 2D molecular descriptors. The results indicate that: i) Machine Learning algorithms can effectively use ID molecular descriptors to construct accurate and simple models; ii) extending the set of descriptors to include 2D descriptors improve the accuracy of the models
    • …
    corecore