15 research outputs found

    Submarine landslide morphometrics and slope failure dynamics along a mixed carbonate-siliciclastic margin, north-eastern Australia

    Get PDF
    Comparatively little work has been carried out on the morphology and distribution of submarine landslides onmixed carbonate-siliciclastic margins. The morphometric analysis of 84 open slope submarine landslides on the Great Barrier Reef (GBR) margin of north-eastern Australia provides useful insights into slope failure dynamics and frequency distribution of landslides on mixed margins. Our analysis has revealed that the slope area affected by failures (12.6% of the margin) is similar to siliciclastic-dominated passive margins, although the total volume of remobilized sediment (73 km3) is comparatively small. Landslide scars lie at shallower depths to the south of the margin (mean of 576 m vs 1517 m to the north) and there is good correlation between the depth at origin and depth at termination for the GBR landslides. The cumulative frequency distribution of volume, area and total length of the GBR landslides does not fit to common distributions (e.g., power law, logarithmic or exponential) for the entire dataset. Still, the cumulative frequency distribution of landslide dimensions can be statistically explained either by a power law similar to other passive margins, or by a lognormal distribution similar to some siliciclastic margins. Morphometric characteristics, such as the volume of sediment released per unit width and the probability function of volume distribution suggest that slope failures mainly involved relatively unconsolidated sediments. We find that the disintegration by debris flows was the dominant process along the entire GBR margin and that their spreading efficiency and mobility was relatively low. Margin stratigraphy, fluid overpressure at the base of the slope, and detachment surfaces at the boundary between different lithologies that separate sedimentary cycles may have preconditioned the slope to fail. This compilation provides a robust morphometric framework that allows comparison with existing and future slope failure databases, and lays the foundation for performing numerical simulations to assess the landslide-generated tsunamigenic hazards along the GBR margin.Grupo RNM190, Universidad de Granada / CBU

    Tectonic control on the palaeogeographic evolution of thrust-top basins at the active margin of the Guadalquivir Basin (central Betic Cordillera, S Spain)

    Get PDF
    The Guadalquivir Basin is the foreland basin of the Betic Cordillera (S Spain). Closest to the orogen, several thrust-top basins evolved during the Late Miocene in the central part of the cordillera. Here, we study the Upper Miocene deposits in five of these satellite basins: Montefrío, Iznájar-Cuevas de San Marcos, Antequera, Bobadilla Estación and Teba, in order to (1) update the stratigraphic framework, (2) infer a depositional model, (3) establish the relationship between sedimentary record and tectonic context and (4) reconstruct the palaeogeography of the area during the Late Miocene. Upper Miocene sediments mostly consist of mixed carbonate-terrigenous deposits. Facies characterization allows inferring a sedimentary model corresponding to a ramp with foreshore deposits changing to a shoal belt offshore in the inner ramp. Swaley and hummocky cross-stratified deposits formed in the transition to the middle ramp, and plane parallel carbonate beds in the distal middle-outer ramp. Factory facies, dominated by rhodoliths and bryozoans, also occur in the middle-outer ramp environments. Silts and marls formed in the deepest outer ramp and basin settings respectively. Breccias accumulated at the toe of palaeocliffs and conglomerates and massive coarse sands were deposited in fluvio-deltaic systems. Conglomerates and sands were also reworked as gravity flows and redeposited offshore. Local facies include rudstones-grainstones displaying large-scale trough-cross bedding formed in a strait in Montefrío, and marls with chalky carbonates deposited in a shallow marine, sheltered lagoon with hydromorphic soils in Bobadilla Estación. The study basins evolved in an N-S compressive tectonic context responsible of the emersion of the main Betic reliefs. Concomitantly, E-W and ESE-WNW extension originated the main depocentres. The influence of the tectonic activity on the sedimentary infills is indicated by the presence of synsedimentary deformations and several diachronic unconformities, which are younger westward. Tectonism, in turn, also controlled the palaeogeographic evolution during the late Tortonian-early Messinian interval.Ministerio de Ciencia, Innovación y Universidades/Agencia Estatal de Investigación (MCIN/AEI), Grant/Award Number: PID2022-142806NB-100 and PGC2018-099391-B-100ERDFJunta de Andalucía, Grant/Award Number: RMN19

    Incised valleys on the Algarve inner shelf, northern Gulf of Cadiz margin: Stratigraphic architecture and controlling factors in a low fluvial supply setting

    Get PDF
    This study received financial support by research projects CGL2011-30302-C02-02 and PID2021-125489OB-I00, supported by Spanish Ministries of Economy and Competitiveness and Science and Innovation. We thank the hard work done by the crew, scientists, and technicians on board Spanish RV Ramón Margalef during the LASEA survey and Belgian RV Belgica during the COMIC survey. Shiptime on RV Belgica was provided by BELSPO and RBINS–OD Nature. Seismic interpretations were made using IHS Kingdom™ software, thanks to the participation of the Instituto Andaluz de Ciencias de la Tierra in the IHS University Grant program. I. Mendes thanks to Fundação para a Ciência e a Tecnologia for Research Assistant contract DL57/2016/CP1361/CT0009, projects UID/0350/2020 CIMA and LA/P/0069/2020. Two external reviewers revised the first version of this manuscript and provided valuable comments and suggestions.A network of cross-shelf paleovalleys has been recognized over the paleo-inner shelf off the Gila & SIM;o-Almargem Estuary, a small fluvial drainage system that presently receives minor sediment supply in the eastern Algarve shelf, northern margin of the Gulf of Cadiz (SW Iberian Peninsula). This study is aimed at determining the driving controls that triggered substantially different paleohydrological conditions and sedimentary dynamics of ancient fluvial systems in this margin. We focus on evidences of secondary controls on valley genesis and evolution, superimposed to primary glacio-eustatic control such as antecedent geology, low fluvial supply and changing hydrodynamic regimes. The architecture and spatial distribution of these paleovalleys were interpreted based on a grid of seismic profiles with different resolutions. Likewise, a sediment core obtained in a distal position of the paleovalley system provided information about sedimentary processes during the most recent stage of valley infilling. The chronostratigraphic framework was constructed based on regional seismic horizons defined in previous studies and complemented with two AMS 14C dates obtained from bivalve shells.The inner shelf paleovalley system is composed of several incised valley features which exhibit a remarkable similar internal architecture. These inner valley features exhibit two major incision phases (from oldest to youngest; IP 2 and IP 1) that are thought to constitute a simple paleovalley system formed during the last glacial cycle. The origins of the incision are considered to be different. The older one is related to fluvial incision during the sea-level fall leading into the Last Glacial Maximum, whereas the recent one is interpreted as the result of tidal scour during the postglacial transgression. Their corresponding infillings are interpreted, respectively, as estuarine bay-fill deposits and estuary-mouth sands. Overlying the paleovalley infilling, a distinctive reflective unit is in agreement with the generation of coastal barriers and related depositional systems.The formation of the paleo-inner-shelf paleovalley system was strongly conditioned by antecedent geology, which strongly limited the generation of wide incised valleys and determined the amount of incision landward of a well-defined break of slope. Its postglacial infilling was mainly estuarine in nature, likely involving the development of a dendritic system, with numerous barriers interrupted by tidal inlets and channels in a mixed estuarine system with low fluvial supply.Spanish Ministries of Economy and Competitiveness and Science and Innovation CGL2011-30302-C02-02, PID2021-125489OB-I00Fundação para a Ciência e a Tecnologia for Research Assistant DL57/2016/CP1361/CT0009, projects UID/0350/2020 CIMA, LA/P/0069/202

    Los estrechos Miocenos Atlántico-Mediterráneos de la Cordillera Bética (S de España)

    Get PDF
    The link between the Mediterranean Sea and the Atlantic Ocean through the Betic Cordillera (southern Spain) was reduced to a few seaways in the Miocene as the mountain belt uplifted during the Alpine orogeny. The North-Betic Strait, located in the Prebetic Zone, was the first one to close in the early Late-Miocene. During the Tortonian, there were connections through the Granada-Guadalquivir basins (Zagra Strait) and the Guadix-Guadalquivir basins (Dehesas de Guadix Strait). Only one corridor, the Guadalhorce Strait, existed in the early Messinian through the Guadalquivir and Málaga basins. The closing of the youngest straits (Dehesas de Guadix and Guadalhorce Straits) brought about profound paleoceanographic changes, leading to an increase of Mediterranean restriction and watermass stratification. All these straits were several kilometers wide, and a few tens to c. 100 m deep. Strait deposits (up to 400 m thick) consist of siliciclastics and siliciclastics-carbonates. Giant dunes (up to 30 m high and 800 m long), exhibiting internal giant cross-bedding, are characteristic features. In the North-Betic and Zagra straits the dunes were moved by tides and in the Dehesas de Guadix and Guadalhorce straits by bottom density currents flowing from the Mediterranean towards the Atlantic.Las conexiones Atlántico-Mediterráneo, en el Mioceno, a través de la Cordillera Bética (S de España), fueron progresivamente reduciéndose a unos pocos estrechos conforme ésta fue levantando durante la Orogenia Alpina. El Estrecho Norbético, localizado en la Zona Prebética (parte más externa de la Cordillera Bética) fue el primero en cerrarse en el Tortoniense inferior. A lo largo del Tortoniense las conexiones fueron a través de las cuencas de Granada y del Guadalquivir (Estrecho de Zagra) y de las de Guadix y del Guadalquivir (Estrecho de Dehesas de Guadix). El último estrecho en desarrollarse, en el Messiniense inferior, fue el del Guadalhorce. La conexión Atlántico-Mediterránea fue, en este caso, a través de las cuencas de Málaga y la del Guadalquivir. El cierre de los estrechos más modernos (Dehesas de Guadix y Guadalhorce) indujo cambios paleoceanográficos profundos en el Mediterráneo, con aumento significativo de su nivel de restricción y de estratificación de sus aguas. Estos estrechos tenían unos pocos kilómetros de anchura y profundidades entre unas pocas decenas de metros y algo más de 100 m. Los sedimentos de los estrechos son siliciclásticos y mezclas de siliciclásticos y carbonatos bioclásticos, con potencias de hasta 400 m. La presencia de dunas gigantes es una característica distintiva, omnipresente en estos antiguos estrechos. Las mayores dunas preservadas alcanzan los 30 m de altura, se extienden lateralmente unos 800 m y muestran, internamente, dispositivos de capas cruzadas, con hasta 15° de buzamiento. En el Estrecho Norbético y el de Zagra la estratificación cruzada de gran escala se generó como resultado de la migración de grandes dunas movidas por las mareas. En los Estrechos de Dehesas de Guadix y del Guadalhorce la estratificación cruzada de gran escala es unidireccional. En estos dos últimos casos, las responsables del desplazamiento de las dunas fueron las corrientes de fondo mediterráneas, más salinas y de más alta densidad, en su salida hacia el Atlántico.This paper has been supported by the research project CGL2010-20857 (Ministerio de Ciencia e Innovación of Spain)

    Miocene Atlantic-Mediterranean Betic Straits (Southern Spain)

    Get PDF
    Publicado en: Martín, J.M.; Puga-Bernabéu, A.; Aguirre, J.; Braga, J.C. Miocene Atlantic-Mediterranean seaways in the Betic Cordillera (Southern Spain). Revista de la Sociedad Geológica de España, 27(1): 175-186 (2014). [http://www.sociedadgeologica.es/archivos/REV/27(1)/art11_175-186%20RSGE27_1.pdf]The link between the Mediterranean Sea and the Atlantic Ocean through the Betic Cordillera (southern Spain) was reduced to a few seaways in the Miocene as the mountain belt uplifted during the Alpine orogeny. The North-Betic Strait, located in the Prebetic Zone, was the first one to close in the early Late-Miocene. During the Tortonian, there were connections through the Granada-Guadalquivir basins (Zagra Strait) and the Guadix-Guadalquivir basins (Dehesas de Guadix Strait). Only one corridor, the Guadalhorce Strait, existed in the early Messinian through the Guadalquivir and Málaga basins. The closing of the youngest straits (Dehesas de Guadix and Guadalhorce Straits) brought about profound paleoceanographic changes, leading to an increase of Mediterranean restriction and watermass stratification. All these straits were several kilometers wide, and a few tens to c. 100 m deep. Strait deposits (up to 400 m thick) consist of siliciclastics and siliciclastics-carbonates. Giant dunes (up to 30 m high and 800 m long), exhibiting internal giant cross-bedding, are characteristic features. In the North-Betic and Zagra straits the dunes were moved by tides and in the Dehesas de Guadix and Guadalhorce straits by bottom density currents flowing from the Mediterranean towards the Atlantic.Las conexiones Atlántico-Mediterráneo, en el Mioceno, a través de la Cordillera Bética (S de España), fueron progresivamente reduciéndose a unos pocos estrechos conforme ésta fue levantando durante la Orogenia Alpina. El Estrecho Norbético, localizado en la Zona Prebética (parte más externa de la Cordillera Bética) fue el primero en cerrarse en el Tortoniense inferior. A lo largo del Tortoniense las conexiones fueron a través de las cuencas de Granada y del Guadalquivir (Estrecho de Zagra) y de las de Guadix y del Guadalquivir (Estrecho de Dehesas de Guadix). El último estrecho en desarrollarse, en el Messiniense inferior, fue el del Guadalhorce. La conexión Atlántico-Mediterránea fue, en este caso, a través de las cuencas de Málaga y la del Guadalquivir. El cierre de los estrechos más modernos (Dehesas de Guadix y Guadalhorce) indujo cambios paleoceanográficos profundos en el Mediterráneo, con aumento significativo de su nivel de restricción y de estratificación de sus aguas. Estos estrechos tenían unos pocos kilómetros de anchura y profundidades entre unas pocas decenas de metros y algo más de 100 m. Los sedimentos de los estrechos son siliciclásticos y mezclas de siliciclásticos y carbonatos bioclásticos, con potencias de hasta 400 m. La presencia de dunas gigantes es una característica distintiva, omnipresente en estos antiguos estrechos. Las mayores dunas preservadas alcanzan los 30 m de altura, se extienden lateralmente unos 800 m y muestran, internamente, dispositivos de capas cruzadas, con hasta 15° de buzamiento. En el Estrecho Norbético y el de Zagra la estratificación cruzada de gran escala se generó como resultado de la migración de grandes dunas movidas por las mareas. En los Estrechos de Dehesas de Guadix y del Guadalhorce la estratificación cruzada de gran escala es unidireccional. En estos dos últimos casos, las responsables del desplazamiento de las dunas fueron las corrientes de fondo mediterráneas, más salinas y de más alta densidad, en su salida hacia el Atlántico

    Submarine-channels system in a temperate carbonate ramp, Sorbas basin, southeastern Spain

    Get PDF
    Temperate carbonates with abundant remains of braquiopods and bivalves deposited in a carbonate ramp developed at the northern margin of the Sorbas Basin during the latest Tortonian-earliest Messinian. Small submarine channels linked to ephemeral rivers curses (ramblas) excavated into the ramp, eroding and transporting sediment seawards from the factory. Lateral bars developed at the margin of the channels indicate an active sediment transport though the submarine channels. Small submarine fans formed on the ramp at the end of the channelsEn este trabajo se presenta un ejemplo de canales submarinos de pequeña escala que atraviesan una rampa de carbonatos templados en la Cuenca de Sorbas (sureste de España), proporcionando información sobre las características geométricas y funcionamiento de estos canales, y ayudando a caracterizar el espectro sedimentario de estos elementos deposicionales en los sistemas de carbonatos templados.Este trabajo ha sido realizado en el marco del proyecto CGL2007-60774/ BTE del Ministerio de Educación y Ciencia de España. A. Puga-Bernabéu desarrolló su investigación al amparo de un contrato de investigación F.P.U. (MECUGR)

    Origen de la porosidad y la permeabilidad en sedimentos y rocas carbonatadas

    Get PDF
    El origen de la porosidad y permeabilidad en los sedimentos y rocas carbonatadas es múltiple y variado. Contemporáneamente al depósito se desarrolla una porosidad intergranular y otra de intercrecimiento (esta última sólo en carbonatos arrecifales), ambas muy importantes. Huecos de menor entidad, generalmente no conectados entre sí, aparecen en el interior de los granos o en relación con estructuras de desecación, perforación y bioturbación. La porosidad original de la matriz de grano fino (micrita) desaparece rápidamente al enterrarse el sedimento. En la diagenésis los procesos de compactación y cementación reducen drásticamente la porosidad, mientras que los de disolución y reemplazamiento la incrementan significativamente. Cabe destacar los de karstificación y los de dolomitización, con desarrollo, en el primer caso, de grandes conductos y cuevas y, en el segundo, de una importante porosidad intercristalina. Los procesos de fracturación y brechificación también incrementan de un modo notorio la porosidad. En las rocas carbonatadas se combinan con frecuencia todos estos posibles orígenes por lo que el resultado final puede llegar a ser tremendamente complejo.The origin of porosity and permeability in carbonate rocks is multiple and diverse. In most cases, a significant intergranular and intergrowth (in reef carbonates), interconnected porosity is synsedimentary developed. Minor, usually isolated, synsedimentary voids occur inside grains or form in relation with desiccation, boring and burrowing processes. The original porosity of the matrix (micrite) quickly disappears during subsequent sediment burial. During diagenesis, compaction and cementation strongly reduce porosity while dissolution and replacement increase it significantly. Karstification may result in the development of huge channels and caves and an important intercrystalline, interconnected porosity results from dolomitization. Tectonic fracturing and brecciation also increase porosity. A combination of most (it not all) of these processes is common feature in carbonate rocks and the final result may be extremely complex.Departamento de Estratigrafía y Paleontologí

    Origin and driving mechanisms of marine litter in the shelf- incised Motril, Carchuna, and Calahonda canyons (northern Alboran Sea)

    Get PDF
    The authors wish to thank the captain and crew of R/V Sarmiento de Gamboa for their dedication and constant support for the execution of activities onboard, and to the participants of the ALSSOMAR-S2S expedition for their help during data acquisition. Multibeam bathymetry and fishing activity data were provided by the “Ministerio de Pesca, Agricultura y Alimentació n”, Spanish government. Land use data were provided by the “Consejerı́a de Agricultura, Ganaderı́a, Pesca y Desarrollo Sostenible, Junta de Andalucı́a”, regional government. JR acknowledges partial support from the 18-ESMARES2-CIRCA project of the Instituto Español de Oceanografı́ a (IEO-CSIC), under the framework of the tasks commissioned to the IEO by the Ministerio de Transición Ecológica y Reto Demográfico (MITERD) of the Spanish government for the application of the Marine Strategy Framework Directive (MSFD) in Spanish waters. IM acknowledges to Fundação para a Ciência e a Tecnologia for Research Assistant contract DL57/2016/CP1361/ CT0009 and project UID/0350/2020 CIMA. Very constructive and detailed reviews of an initial manuscript version were provided by two reviewers and by Guest Associate Editor Veerle Huvenne. We are grateful to Jean Sanders for correcting the English text.The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2023.1098927/ full#supplementary-materialIntroduction and methods: Marine litter density, distribution and potential sources, and the impact on canyon seafloor habitats were investigated in the Motril, Carchuna and Calahonda canyons, located along the northern margin of the Alboran Sea. During the ALSSOMAR-S2S oceanographic survey carried out in 2019, canyon floor imagery was collected by a Remotely Operated Vehicle along 5 km in the Motril Canyon, 10 km in the Carchuna Canyon, and 3 km in Calahonda Canyon, together with 41 surficial sediment samples. Additionally, coastal uses, maritime traffic and fishing activity data were analyzed. A 50 m resolution multibeam bathymetry served as base map. Results: In the Motril and Calahonda canyons, the density of marine litter was low and the material was dispersed, very degraded and partially buried. In contrast, the Carchuna Canyon contained a greater amount and variety of litter. The Carchuna Canyon thalweg exhibited a density of marine litter up to 8.66 items·100 m -1 , and litter hotspots with a density of up to 42 items·m 2 are found along the upper reaches of the canyon thalweg. Discussion: Low litter abundances found in the studied canyons most likely reflect low population densities and the absence of direct connections with streams in the nearby coasts. The high shelf incision of the Carchuna Canyon and its proximity to the coastline favor littoral sediment remobilization and capture as well as the formation of gravity flows that transport the marine litter along the thalweg toward the distal termination of the channel. Litter hotspots are favored by the canyon morphology and the occurrence of rocky outcrops. Most debris is of coastal origin and related to beach occupation and agricultural practices in the adjacent coastal plain. A third origin was represented by fishing gear in the study area. Fishing activity may be producing an impact through physical damage to the skeletons of the colonial scleractinians located in the walls of the Carchuna Canyon. In contrast, the Motril and Calahonda canyons can be considered passive systems that have mainly acted as depositional sinks in the recent past, as evidenced by buried marine litter.Ministerio de Economia y Competitividad, Spanish goverment CTM2017-88237-PMinistry of Science and Innovation, Spain (MICINN) Spanish Government PID2021-125489OB-I00Cerrillo-Escoriza's PhD project - MCIN/AEI PRE2018-084812FSE Invierte en tu futur

    Upper Miocene deposits at the southern margin of the Guadalquivir Foreland Basin (central Betic Cordillera, S. Spain). Implications for the closure timing of the Atlantic-Mediterranean connections

    Get PDF
    Acknowledgments We acknowledge the comments and suggestions made by two re- viewers, which have improved the quality of the paper. We thank Jodi Eckart for her help correcting the English text. Dr Sánchez-Almazo helped with the SEM analyses and photographs of foraminifers. This paper has been supported by the research project PGC2018–099391-B- 100 of the Spanish Ministerio de Ciencia, Innovación y Competitividad, and the research group RMN190 of the Junta de Andalucía.Mixed siliciclastic-carbonate deposits accumulated in several satellite sub-basins at the southern margin of the Guadalquivir Basin, the foreland basin of the Betic Cordillera (S. Spain). The prevailing coarse-grained sediments and deposition in shallow-water settings make it difficult to establish the precise age of the complete successions. For this reason, in previous studies, these deposits were attributed to the late Tortonian, although a Messinian age was not totally ruled out. The age of the upper Miocene deposits in the central part of the Guadalquivir Basin is here re-evaluated based on the analysis of several sections distributed in different areas: Antequera, Iznájar-Cuevas de San Marcos, Teba, and Bobadilla Estación. According to planktonic foraminifer and nannoplankton assemblages, the marine sedimentary infill of this sector of the southern margin of the Guadalquivir Basin is late Tortonian-early Messinian (late Miocene) in age. The occurrence of marine deposits characterized by the dominance of Globorotalia miotumida group, dextrally-coiled G. scitula, and the presence of G. margaritae, Globigerina multiloba, Discoaster quinqueramus, Amaurolithus primus, A. amplificus, and Reticulofenestra rotaria at the northern end of the Guadalhorce Corridor, the last active gateway in the Betic Cordillera connecting the Atlantic and the Mediterranean, indicates that it remained open until the early Messinian.Research project PGC2018–099391-B- 100 of the Spanish Ministerio de Ciencia, Innovación y CompetitividadResearch group RMN190 of the Junta de Andalucí

    Mixed carbonate-siliciclastic contourite drift deposits associated with the entrance of an Atlantic-Mediterranean corridor (late Miocene, southwest Spain)

    Get PDF
    Carbonate contourite drifts are poorly documented in the onshore record because of the difficulty of implementing diagnostic criteria for their recognition. Accordingly, little is known about the relative position of carbonate drifts with respect to ancient carbonate platforms, seaways and shallow passages within the context of palaeoceanography. This study presents a fossil example of mixed carbonate-siliciclastic drift cropping out in a quarry in Osuna (Sevilla province, southern Spain) at the northern end of the Guadalhorce Corridor, a Miocene strait connecting the Mediterranean Sea and the Atlantic Ocean in the Betic Cordillera. Based on the facies and sedimentary structures, the studied succession is divided into three units: 1) the lower unit, Unit 1, is a 33-m thick succession of large carbonate bodieswithmega cross-stratification pointing to the southeast and secondarily to the northwest interpreted as a contourite drift; 2) the intermediate Unit 2 is a 0.5–2-m thick terrigenous conglomerate body eroding the top of Unit 1; and 3) the uppermost Unit 3 consists of a 6-m thick siliciclasticdominated succession with herringbone cross-stratification and a dominant direction of the structures to the northwest interpreted as tidal deposits. The large-scale sediment bodies with mega cross-beds, the presence of reactivation surfaces with grain-size changes, and the unidirectionality of the structures were diagnostic for the recognition of Unit 1 as drift deposits. The dominant sedimentary structures pointing to the southeast in the drift were generated by Atlantic inflow into the Mediterranean. This challenges the classical “siphon” model for the Atlantic-Mediterranean water-mass circulation pattern for this age. The conglomerates of Unit 2 evidence regional uplift of the southernmargin of the Guadalquivir Basin that promoted a change in the depositional mode from a bottom-current dominated (Unit 1) to a tide-dominated environment (Unit 3) after the closure of the Guadalhorce Corridor in the Messinian.Juan de la Cierva Project (Ministerio de Ciencia, Innovacion y Universidades) JC2019042375-I project SECAMARA PGC2018099391-B-100Junta de Andalucia European Commission RNM-19
    corecore