1,852 research outputs found

    Competition between glass transition and liquid-gas separation in attracting colloids

    Full text link
    We present simulation results addressing the phenomena of colloidal gelation induced by attractive interactions. The liquid-gas transition is prevented by the glass arrest at high enough attraction strength, resulting in a colloidal gel. The dynamics of the system is controlled by the glass, with little effect of the liquid-gas transition. When the system separates in a liquid and vapor phases, even if the denser phase enters the non-ergodic region, the vapor phase enables the structural relaxation of the system as a whole.Comment: Proceedings of the glass conference in Pisa (September 06

    Dynamical heterogeneities in an attraction driven colloidal glass

    Full text link
    The dynamical heterogeneities (DH) in non-ergodic states of an attractive colloidal glass are studied, as a function of the waiting time. Whereas the fluid states close to vitrify showed strong DH, the distribution of squared displacements of the glassy states studied here only present a tail of particles with increased mobility for the lower attraction strength at short waiting times. These particles are in the surface of the percolating cluster that comprises all of the particles, reminiscent of the fastest particles in the fluid. The quench deeper into the attractive glass is dynamically more homogeneous, in agreement with repulsive glasses (i.e. Lennard-Jones glass).Comment: Proceedings of 5th IDMRCS - Lille 200

    Tagged-particle dynamics in a hard-sphere system: mode-coupling theory analysis

    Full text link
    The predictions of the mode-coupling theory of the glass transition (MCT) for the tagged-particle density-correlation functions and the mean-squared displacement curves are compared quantitatively and in detail to results from Newtonian- and Brownian-dynamics simulations of a polydisperse quasi-hard-sphere system close to the glass transition. After correcting for a 17% error in the dynamical length scale and for a smaller error in the transition density, good agreement is found over a wide range of wave numbers and up to five orders of magnitude in time. Deviations are found at the highest densities studied, and for small wave vectors and the mean-squared displacement. Possible error sources not related to MCT are discussed in detail, thereby identifying more clearly the issues arising from the MCT approximation itself. The range of applicability of MCT for the different types of short-time dynamics is established through asymptotic analyses of the relaxation curves, examining the wave-number and density-dependent characteristic parameters. Approximations made in the description of the equilibrium static structure are shown to have a remarkable effect on the predicted numerical value for the glass-transition density. Effects of small polydispersity are also investigated, and shown to be negligible.Comment: 20 pages, 23 figure

    Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation

    Full text link
    We analyze the slow, glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory of the glass transition (MCT). Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multi-component calculation, but qualitative disagreement at small qq when the system is treated as effectively monodisperse. The origin of the different small-qq behaviour is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor, and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantiative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behaviour are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.Comment: 23 pages, 26 figure

    Aging in attraction-driven colloidal glasses

    Full text link
    Aging in an attraction-driven colloidal glass is studied by computer simulations. The system is equilibrated without attraction and instantaneously ``quenched'', at constant colloid volume fraction, to one of two states beyond the glass transition; one is close to the transition, and the other one deep in the glass. The evolution of structural properties shows that bonds form in the system, increasing the local density, creating density deficits (holes) elsewhere. This process slows down with the time elapsed since the quench. As a consequence of bond formation, there is a slowing down of the dynamics, as measured by the mean squared displacement and the density, bond, and environment correlation functions. The density correlations can be time-rescaled to collapse their long time (structural) decay. The time scale for structural relaxation shows for both quenches a super-linear dependence on waiting time; it grows faster than the bond lifetime, showing the collective origin of the transition. At long waiting times and high attraction strength, we observe {\rem completely} arrested dynamics for more than three decades in time, although individual bonds are not permanent on this time scale. The localization length decreases as the state moves deeper in the glass; the non-ergodicity parameter oscillates in phase with the structure factor. Our main results are obtained for systems with a barrier in the pair potential that inhibits phase separation. However, when this barrier is removed for the case of a deep quench, we find changes in the static structure but almost none in the dynamics. Hence our results for the aging behavior remain relevant to experiments in which the glass transition competes with phase separation.Comment: 12 pages, 15 figure

    The mass and environmental dependence on the secular processes of AGN in terms of morphology, colour, and specific star-formation rate

    Full text link
    Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, Active galactic nuclei (AGN) have also a principal action. However, the connections between these three actors are still uncertain. In this work we investigate the effects of stellar mass and the large-scale environment (LSS), on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS we fix the stellar mass into low- and high-mass galaxies. We use the tidal strength parameter to quantify their effects. We found that AGN is strongly affected by stellar mass in 'active' galaxies (namely late-type, blue, and star-forming), however it has no influence for 'quiescent' galaxies (namely early-type, red, and quenched), at least for masses down to 1010 [M⊙]\rm 10^{10}\,[M_\odot]. In relation to the LSS, we found an increment on the fraction of SFN with denser LSS in low-mass star forming and red isolated galaxies. Regarding AGN, we find a clear increment of the fraction of AGN with denser environment in quenched and red isolated galaxies, independently of the stellar mass. AGN activity would be 'mass triggered' in 'active' isolated galaxies. This means that AGN is independent of the intrinsic property of the galaxies, but on its stellar mass. On the other hand, AGN would be 'environment triggered' in 'quiescent' isolated galaxies, where the fraction of AGN in terms of sSFR and colour increases from void regions to denser LSS, independently of its stellar mass.Comment: 14 pages, 9 figures (11 pages and 6 figures without appendix), accepted for publication in Astronomy & Astrophysic

    Mode Coupling and Dynamical Heterogeneity in Colloidal Gelation: A Simulation Study

    Full text link
    We present simulation results addressing the dynamics of a colloidal system with attractive interactions close to gelation. Our interaction also has a soft, long range repulsive barrier which suppresses liquid-gas type phase separation at long wavelengths. The new results presented here lend further weight to an intriguing picture emerging from our previous simulation work on the same system. Whereas mode coupling theory (MCT) offers quantitatively good results for the decay of correlators, closer inspection of the dynamics reveals a bimodal population of fast and slow particles with a very long exchange timescale. This population split represents a particular form of dynamic heterogeneity (DH). Although DH is usually associated with activated hopping and/or facilitated dynamics in glasses, the form of DH observed here may be more collective in character and associated with static (i.e., structural) heterogeneity.Comment: 12 pages, 12 figure

    Bond formation and slow heterogeneous dynamics in adhesive spheres with long--ranged repulsion: Quantitative test of Mode Coupling Theory

    Full text link
    A colloidal system of spheres interacting with both a deep and narrow attractive potential and a shallow long-ranged barrier exhibits a prepeak in the static structure factor. This peak can be related to an additional mesoscopic length scale of clusters and/or voids in the system. Simulation studies of this system have revealed that it vitrifies upon increasing the attraction into a gel-like solid at intermediate densities. The dynamics at the mesoscopic length scale corresponding to the prepeak represents the slowest mode in the system. Using mode coupling theory with all input directly taken from simulations, we reveal the mechanism for glassy arrest in the system at 40% packing fraction. The effects of the low-q peak and of polydispersity are considered in detail. We demonstrate that the local formation of physical bonds is the process whose slowing down causes arrest. It remains largely unaffected by the large-scale heterogeneities, and sets the clock for the slow cluster mode. Results from mode-coupling theory without adjustable parameters agree semi-quantitatively with the local density correlators but overestimate the lifetime of the mesoscopic structure (voids).Comment: 10 pages, 8 figure
    • …
    corecore