6 research outputs found

    Hafnium in nuclear power industry: the evolution of increasing of the economic indicators and the operation safety of pressurized water nuclear reactors

    Get PDF
    А further increase of the reliability, safety and efficiency of nuclear reactors, the extension of the nuclear fuel campaign and a better control of the fuel burning-out level demand to search for and use new materials. New materials are also necessary for new energy release management elements in the active zone. In this paper, the potential place that hafnium could occupy in the solution of the mentioned tasks is discussed. The high values of the absorption cross-section for thermal and epithermal neutrons, high corrosion resistance, good mechanical properties and heat conduction of hafnium allow for its use, without any barrier coatings, as the absorbing and structural material for regulation rods of nuclear reactors. Another application of high purity hafnium in the nuclear power industry can be in the emitter material of Compton-type Self-Powered Neutron Detectors (SPND). Such SPND will have instant response to neutron flux changes, which will allow to reach positive effects on the reactor safety and efficiency: increase fuel burning-out times; control the crisis boiling coordinates and time; exclude the processes, which could cause heavy accidents).Збільшення надійності та безпеки, підвищення ефективності ядерних реакторів, подовження кампанії палива та контроль рівня його вигоряння вимагають пошуку і використання нових матеріалів, в тому числі, й для елементів управління енерговиділенням в активній зоні. У роботі розглядається, яке місце може зайняти гафній при вирішенні перерахованих завдань. Високі перетини поглинання теплових і резонансних нейтронів, корозійна стійкість, механічні властивості та теплопровідність гафнію дозволяють використовувати його без оболонок і покриттів в якості поглинаючого та одночасно конструкційного матеріалу для регулюючих стрижнів ядерних реакторів. Іншим застосуванням чистого гафнію в ядерній енергетиці може бути використання його в якості емітера в комптонівському детекторі прямого заряду (ДПЗ). Такий ДПЗ буде мати миттєву реакцію на зміни потоку нейтронів, що багато в чому дозволить досягти позитивних ефектів (збільшення вигоряння палива; контролю координати і часу кризового кипіння; виключення процесів, що призводять до тяжких аварій).Увеличение надёжности и безопасности, повышение эффективности ядерных реакторов, продление кампании топлива и контроль уровня его выгорания требуют поиска и использования новых материалов, в том числе и для элементов управления энерговыделением в активной зоне. В работе обсуждается, какое место может занять гафний при решении перечисленных задач. Высокие сечения поглощения тепловых и резонансных нейтронов, коррозионная стойкость, механические свойства и теплопроводность гафния позволяют использовать его без оболочек и покрытий в качестве поглощающего и одновременно конструкционного материала для регулирующих стержней ядерных реакторов. Другим применением чистого гафния в ядерной энергетике может быть использование его в качестве эмиттера в комптоновском детекторе прямого заряда (ДПЗ). Такой ДПЗ будет обладать мгновенной реакцией на изменения потока нейтронов, что во многом позволит достичь положительных эффектов (увеличения выгорания топлива; контроля координаты и времени кризисного кипения; исключения процессов, приводящих к тяжелым авариям)

    Hafnium in nuclear power industry: the evolution of increasing of the economic indicators and the operation safety of pressurized water nuclear reactors

    No full text
    А further increase of the reliability, safety and efficiency of nuclear reactors, the extension of the nuclear fuel campaign and a better control of the fuel burning-out level demand to search for and use new materials. New materials are also necessary for new energy release management elements in the active zone. In this paper, the potential place that hafnium could occupy in the solution of the mentioned tasks is discussed. The high values of the absorption cross-section for thermal and epithermal neutrons, high corrosion resistance, good mechanical properties and heat conduction of hafnium allow for its use, without any barrier coatings, as the absorbing and structural material for regulation rods of nuclear reactors. Another application of high purity hafnium in the nuclear power industry can be in the emitter material of Compton-type Self-Powered Neutron Detectors (SPND). Such SPND will have instant response to neutron flux changes, which will allow to reach positive effects on the reactor safety and efficiency: increase fuel burning-out times; control the crisis boiling coordinates and time; exclude the processes, which could cause heavy accidents).Збільшення надійності та безпеки, підвищення ефективності ядерних реакторів, подовження кампанії палива та контроль рівня його вигоряння вимагають пошуку і використання нових матеріалів, в тому числі, й для елементів управління енерговиділенням в активній зоні. У роботі розглядається, яке місце може зайняти гафній при вирішенні перерахованих завдань. Високі перетини поглинання теплових і резонансних нейтронів, корозійна стійкість, механічні властивості та теплопровідність гафнію дозволяють використовувати його без оболонок і покриттів в якості поглинаючого та одночасно конструкційного матеріалу для регулюючих стрижнів ядерних реакторів. Іншим застосуванням чистого гафнію в ядерній енергетиці може бути використання його в якості емітера в комптонівському детекторі прямого заряду (ДПЗ). Такий ДПЗ буде мати миттєву реакцію на зміни потоку нейтронів, що багато в чому дозволить досягти позитивних ефектів (збільшення вигоряння палива; контролю координати і часу кризового кипіння; виключення процесів, що призводять до тяжких аварій).Увеличение надёжности и безопасности, повышение эффективности ядерных реакторов, продление кампании топлива и контроль уровня его выгорания требуют поиска и использования новых материалов, в том числе и для элементов управления энерговыделением в активной зоне. В работе обсуждается, какое место может занять гафний при решении перечисленных задач. Высокие сечения поглощения тепловых и резонансных нейтронов, коррозионная стойкость, механические свойства и теплопроводность гафния позволяют использовать его без оболочек и покрытий в качестве поглощающего и одновременно конструкционного материала для регулирующих стержней ядерных реакторов. Другим применением чистого гафния в ядерной энергетике может быть использование его в качестве эмиттера в комптоновском детекторе прямого заряда (ДПЗ). Такой ДПЗ будет обладать мгновенной реакцией на изменения потока нейтронов, что во многом позволит достичь положительных эффектов (увеличения выгорания топлива; контроля координаты и времени кризисного кипения; исключения процессов, приводящих к тяжелым авариям)

    Compton detector of neutrons for the energy yieldcontrol in the active zone of WWER

    No full text
    The article examines the processes of radiative neutron capture by nuclei of atoms of metallic rhodium and hafnium. Rhodium is used as the emitter in the direct charge detectors of neutrons, which are used to control the energy yield in the core of nuclear power reactors. A new Compton direct charge detector (DCD) (so-called SPND – Self Powered Neutron Detector) with the emitter of the metallic Hf is proposed. The specifics of the signal formation of the β-emission and Compton neutron detectors are considered. The signal lag time of the rhodium detector was calculated and the respective published data was studied, and the conclusion was made that the use of β-emission detectors for the detection of rapid changes of the neutron flux density is inappropriate. The main advantages of the hafnium emitter is a long “burnout” time of the emitter material and the instantaneous response to changes in the neutron flux in the reactor core. Therefore, the use of detectors with such emitters will simultaneously enhance the reliability and safety of operation of the reactors that are in use currently and those that are being developed.Розглянуті процеси радіаційного захоплення нейтронів ядрами атомів металів родію і гафнію. Родій використовується в якості емітера в детекторах нейтронів прямого заряду, які застосовуються для контролю енерговиділення в активній зоні ядерних реакторів АЕС. Запропоновано новий комптонівський детектор прямого заряду з емітером із металевого Hf. Розглянуто особливості формування сигналів β-емісійних і комптонівських детекторів нейтронів. Розраховано час запізнювання сигналу родієвого детектора, також проведено аналіз літературних даних і зроблено висновок про недоцільність використання β-емісійного детектора в умовах швидких змін щільності потоку нейтронів. Основними перевагами гафнієвого емітера є великий час «вигорання» матеріалу емітера і миттєва реакція детектора на зміну щільності потоку нейтронів в активній зоні реактора. Отже, використання детекторів з такими емітерами дозволить одночасно посилити надійність і безпеку експлуатації сучасних і розроблюваних реакторів.Рассмотрены процессы радиационного захвата нейтронов ядрами атомов металлических родия и гафния. Родий используется в качестве эмиттера в детекторах нейтронов прямого заряда, которые применяются для контроля энерговыделения в активной зоне ядерных реакторов АЭС. Предложен новый комптоновский детектор прямого заряда с эмиттером из металлического Hf. Рассмотрены особенности формирования сигналов β-эмиссионных и комптоновских детекторов нейтронов. Рассчитано время запаздывания сигнала родиевого детектора, также проведен анализ литературных данных и сделан вывод о нецелесообразности использования β-эмиссионного детектора в условиях быстрых изменений плотности потока нейтронов. Основными преимуществами гафниевого эмиттера являются: большое время «выгорания» материала эмиттера и мгновенная реакция детектора на изменение плотности потока нейтронов в активной зоне реактора. Следовательно, использование детекторов с такими эмиттерами позволит одновременно усилить надежность и безопасность эксплуатации современных и разрабатываемых реакторов

    Gamma-ray detector based on high pressure xenon for radiation and environmental safety

    Get PDF
    Gamma-spectrometers based on compressed xenon gas assigned for monitoring the reactors and the radiation background at nuclear power plants, non-proliferation of radioactive materials, supervision and control over the radiation background in the environmentally disadvantaged areas, and other applications, are very promising detectors with excellent performance characteristics. This article reports on the results of the first stage of work on the creation of the portable γ-spectrometer based on compressed xenon that is unique for Ukraine. In order to work with ultra-pure gases under pressure, the complex cryogenic installation for Xe purification and detector filling was designed and manufactured. The installation was made of specially cleaned components, equipped with a heating system for the degassing of the inner walls, and is able of maintaining high vacuum down to 2∙10⁻⁹ mbar. A prototype ionization chamber for the use in portable HPXe detectors was developed and made. For the detector testing, a spectrometric channel based on high-quality electronic components was designed and manufactured. In the initial experiments, a study of the properties of the purified Xe mixed with the dopant H₂ was carried out. The assessment of the lifetime of charge carriers τ in the working gas at a pressure of 30 bar gave the value of τ > 150 μs.Гамма-спектрометри на основі стисненого газу ксенону, що призначені для спостереження і контролю за реакторами і навколишнім фоном на АЕС, нерозповсюдженням радіоактивних матеріалів, радіаційним фоном в екологічно несприятливих зонах і інших застосувань, є дуже перспективними детекторами з відмінними експлуатаційними характеристиками. Дана стаття присвячена результатам першої стадії роботи по створенню унікального для України переносного γ-спектрометра на основі стисненого ксенону. Для роботи з чистими газами під тиском розроблена і виготовлена комплексна кріогенна установка очищення і напуску Xe. Установка створена на основі особливо чистих комплектуючих, оснащена системою прогріву для дегазації внутрішніх стінок і здатна підтримувати високий вакуум до 2∙10⁻⁹ мбар. Розроблено та виготовлено прототип іонізаційний камери для використання в переносних HPXe-детекторах. Для роботи детекторів розроблений і виготовлений спектрометричний тракт на основі високоякісних електронних блоків. В якості перших випробувань проведені дослідження властивостей суміші очищеного Хе з легуючою домішкою H₂. При оцінці часу життя носіїв заряду τ в робочому газі під тиском 30 бар отримані значення τ > 150 мкс.Гамма-спектрометры на основе сжатого газа ксенона, предназначенные для наблюдения и контроля за реакторами и окружающим фоном на АЭС, нераспространением радиоактивных материалов, радиационным фоном в экологически неблагоприятных зонах и других применений, являются очень перспективными детекторами с отличными эксплуатационными характеристиками. Данная статья посвящена результатам первой стадии работы по созданию уникального для Украины переносного γ-спектрометра на основе сжатого ксенона. Для работы с чистыми газами под давлением разработана и изготовлена комплексная криогенная установка очистки и напуска Xe. Установка создана на основе особо чистых комплектующих, оснащена системой прогрева для дегазации внутренних стенок и способна поддерживать высокий вакуум до 2∙10⁻⁹ мбар. Разработан и изготовлен прототип ионизационной камеры для использования в переносных HPXe-детекторах. Для работы детекторов разработан и изготовлен спектрометрический тракт на основе высококачественных электронных блоков. В качестве первых испытаний проведены исследования свойств смеси очищенного Хе с легирующей добавкой H₂. При оценке времени жизни носителей заряда τ в рабочем газе под давлением 30 бар получены значения τ > 150 мкс

    Mineral insulators for kompton detectors of neutrons with a metal hafnium emitter

    Get PDF
    One of the priority tasks of nuclear power industry is to increase the reliability and safety of nuclear power plants. In this regard, traditional detectors for measuring the neutron flux in the reactor core are being improved and new ones are developed. This work is dedicated to one of the tasks of creating a compton self-powered neutron detector, namely, the formation of an insulator of magnesium oxide on an emitter of metallic hafnium. The effect of three types of magnesium oxide of different purity and structural state, as well as annealing temperature on the electrical resistance of the insulator between the collector and the emitter of the detector, is studied. The detector prototypes were manufactured by filling with magnesium oxidepowders or by applying liquid-phase mixturesthereof.Одним з пріоритетних завдань атомної енергетики є підвищення надійності та безпеки ядерноенергетичних блоків. З цією метою вдосконалюються та розробляються нові датчики для вимірювання потоку нейтронів в активній зоні реактора. Дана робота присвячена дослідженню магнію оксиду як ізолятора в комптоновських детекторах прямого заряду з емітером з металевого гафнію. Досліджено вплив трьох видів магнію оксиду різного за чистотою та структурою, а також температури відпалу на електроопір ізолятора між колектором та емітером детектора. Виготовлена ізоляція дослідженних зразків детектора щляхом насипу та нанесенням рідкофазної магнієвої суміші.Одна из наиболее приоритетных задач атомной энергетики – повышение надежности и безопасности ядерно-энергетических установок. В связи с этим совершенствуются и разрабатываются новые датчики измерения потока нейтронов в активной зоне реактора. Данная работа посвящена одному из этапов создания комптоновского детектора прямого заряда, а именно формированию изолятора из окиси магния на эмиттере из металлического гафния. Исследовано влияние трех видов оксида магния различной чистоты и структурного состояния, а также температуры отжига на электросопротивление изолятора между коллектором и эмиттером детектора. Изготовлены опытные образцы детекторов методами засыпки и нанесения жидкофазной смеси оксида магния

    Вплив дози імплантованих іонів дейтерію на мікроструктуру і наномеханічні властивості кремнію

    No full text
    Імплантація водню в кремній з подальшим відпалом (технологія Smart-Cut) застосовується для виготовлення мікроелектронних пристроїв. Покращені характеристики отриманих структур були досягнуті шляхом імплантації дейтерію замість водню. Метод наноіндентування широко використовується при вимірюванні твердості H та модуля пружності E матеріалів у нанорозмірному масштабі. Метою даної роботи є дослідження впливу дози імплантації іонів дейтерію на структуру та механічні властивості монокристалічного кремнію в нанорозмірному масштабі. Досліджено вплив доз імплантації іонів дейтерію в діапазоні від 2×1015 до 1×1018 D/см2 на структуру та механічні властивості монокристалу кремнію в наномасштабі. Зразки полірованого кремнію (111) імплантували при 293 К пучком іонів дейтерію з енергією 24 кеВ. Методом Раманівської спектроскопії було показано, що в залежності від дози імплантації в кремнії утворюються три структурні стани: дейтерій знаходиться у твердому розчині, суміш аморфної фази кремнію і твердого розчину, і тільки аморфний стан (a-Si:D). Термічна десорбційна спектроскопія показує, що при низьких дозах імплантації в спектрах термодесорбциї дейтерію спостерігається один пік з максимумом при Tmax ~ 575 К, а при дозах вище 5×1017 D/см2 з’являється низькотемпературний пік з максимумом при 500 К, що свідчить про утворення аморфного гідрогенізованого кремнію a-Si:D. Наноіндентування показало, що в режимі повної пластичності в контакті (> 100 нм), утворення твердого розчину дейтерію в кремнії спричиняє збільшення твердості поверхні зразка до 14,1 ГПа. Твердість поверхні різко зменшується до 3,6 ГПа з утворенням шару a-Si:D.Implantation of hydrogen into silicon with subsequent annealing (Smart-Cut Technology) is applied to produce microelectronic devices. Improved characteristics of the resulting structures were achieved by using implantation of deuterium instead of hydrogen. The nanoindentation technique is widely used to measure the hardness H and elasticity modulus E of materials at the nanoscale. The aim of the present work is to investigate the influence of deuterium ion implantation dose on the structure and mechanical properties of single crystal silicon at the nanoscale. The influence of the deuterium ion implantation with an implantation dose ranging from 2×1015 to 1×1018 D/cm2 on the structure and mechanical properties of single crystal silicon at the nanoscale has been investigated. Polished (111) silicon samples were implanted at 293 K by using a deuterium ion beam with an ion energy of 24 keV. It was shown by Raman spectroscopy that, depending on the implantation dose, three structural states are formed in silicon: a solid solution of deuterium (D) in Si, a solid solution mixed with the Si amorphous phase, and an amorphous state (a-Si:D) only. Thermal desorption (TD) spectroscopy shows that at low implantation doses, the deuterium TD spectra exhibit a single peak with a maximum at Tmax ~ 575 K. At doses above 5×1017 D/cm2, a lowtemperature peak with a maximum at 500 K appears that is indicative of the formation of amorphous hydrogenated silicon a-Si:D. Nanoindentation tests have shown that in the regime of full plasticity in the indenter contact region (> 100 nm), the formation of deuterium solid solution in Si causes an increase in the sample surface hardness up to 14.1 GPa. The surface hardness sharply decreased down to 3.6 GPa with the a-Si:D layer formation
    corecore