9 research outputs found
Evidence for formation of multi-quantum dots in hydrogenated graphene.
We report the experimental evidence for the formation of multi-quantum dots in a hydrogenated single-layer graphene flake. The existence of multi-quantum dots is supported by the low-temperature measurements on a field effect transistor structure device. The resulting Coulomb blockade diamonds shown in the color scale plot together with the number of Coulomb peaks exhibit the characteristics of the so-called 'stochastic Coulomb blockade'. A possible explanation for the formation of the multi-quantum dots, which is not observed in pristine graphene to date, was attributed to the impurities and defects unintentionally decorated on a single-layer graphene flake which was not treated with the thermal annealing process. Graphene multi-quantum dots developed around impurities and defect sites during the hydrogen plasma exposure process.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Large-scale on-chip integration of gate-voltage addressable hybrid superconductor-semiconductor quantum wells field effect nano-switch arrays
Stable, reproducible, scalable, addressable, and controllable hybrid
superconductor-semiconductor (S-Sm) junctions and switches are key circuit
elements and building blocks of gate-based quantum processors. The
electrostatic field effect produced by the split gate voltages facilitates the
realisation of nano-switches that can control the conductance or current in the
hybrid S-Sm circuits based on 2D semiconducting electron systems. Here, we
experimentally demonstrate a novel realisation of large-scale scalable, and
gate voltage controllable hybrid field effect quantum chips. Each chip contains
arrays of split gate field effect hybrid junctions, that work as conductance
switches, and are made from In0.75Ga0.25As quantum wells integrated with Nb
superconducting electronic circuits. Each hybrid junction in the chip can be
controlled and addressed through its corresponding source-drain and two global
split gate contact pads that allow switching between their (super)conducting
and insulating states. We fabricate a total of 18 quantum chips with 144 field
effect hybrid Nb- In0.75Ga0.25As 2DEG-Nb quantum wires and investigate the
electrical response, switching voltage (on/off) statistics, quantum yield, and
reproducibility of several devices at cryogenic temperatures. The proposed
integrated quantum device architecture allows control of individual junctions
in a large array on a chip useful for the development of emerging cryogenic
nanoelectronics circuits and systems for their potential applications in
fault-tolerant quantum technologies
Statistical evaluation of 571 GaAs quantum point contact transistors showing the 0.7 anomaly in quantized conductance using millikelvin cryogenic on-chip multiplexing
The mass production and the practical number of cryogenic quantum devices producible in a single chip are limited to the number of electrical contact pads and wiring of the cryostat or dilution refrigerator. It is, therefore, beneficial to contrast the measurements of hundreds of devices fabricated in a single chip in one cooldown process to promote the scalability, integrability, reliability, and reproducibility of quantum devices and to save evaluation time, cost and energy. Here, we use a cryogenic on-chip multiplexer architecture and investigate the statistics of the 0.7 anomaly observed on the first three plateaus of the quantized conductance of semiconductor quantum point contact (QPC) transistors. Our single chips contain 256 split gate field effect QPC transistors (QFET) each, with two 16-branch multiplexed source-drain and gate pads, allowing individual transistors to be selected, addressed and controlled through an electrostatic gate voltage process. A total of 1280 quantum transistors with nano-scale dimensions are patterned in 5 different chips of GaAs heterostructures. From the measurements of 571 functioning QPCs taken at temperatures T= 1.4 K and T= 40 mK, it is found that the spontaneous polarisation model and Kondo effect do not fit our results. Furthermore, some of the features in our data largely agreed with van Hove model with short-range interactions. Our approach provides further insight into the quantum mechanical properties and microscopic origin of the 0.7 anomaly in QPCs, paving the way for the development of semiconducting quantum circuits and integrated cryogenic electronics, for scalable quantum logic control, readout, synthesis, and processing applications
Quantized conductance in split gate superconducting quantum point contacts with InGaAs semiconducting two-dimensional electron systems
Quantum point contact or QPC -- a constriction in a semiconducting two-dimensional (2D) electron system with a quantized conductance -- has been found as the building block of novel spintronic, and topological electronic circuits. They can also be used as readout electronic, charge sensor or switch in quantum nanocircuits. A short and impurity-free constriction with superconducting contacts is a Cooper pairs QPC analogue known as superconducting quantum point contact (SQPC). The technological development of such quantum devices has been prolonged due to the challenges of maintaining their geometrical requirement and near-unity superconductor-semiconductor interface transparency. Here, we develop advanced nanofabrication, material and device engineering techniques and report on an innovative realisation of nanoscale SQPC arrays with split gate technology in semiconducting 2D electron systems, exploiting the special gate tunability of the quantum wells, and report the first experimental observation of conductance quantization in hybrid InGaAs-Nb SQPCs. We observe reproducible quantized conductance at zero magnetic fields in multiple quantum nanodevices fabricated in a single chip and systematically investigate the quantum transport of SQPCs at low and high magnetic fields for their potential applications in quantum metrology, for extremely accurate voltage standards, and fault-tolerant quantum technologies.N
Large-scale on-chip integration of gate-voltage addressable hybrid superconductor-semiconductor quantum wells field effect nano-switch arrays
No abstract available
Recommended from our members
LargeâScale OnâChip Integration of GateâVoltage Addressable Hybrid SuperconductorâSemiconductor Quantum Wells Field Effect NanoâSwitch Arrays
Publication status: PublishedStable, reproducible, scalable, addressable, and controllable hybrid superconductorâsemiconductor (SâSm) junctions and switches are key circuit elements and building blocks of gateâbased quantum processors. The electrostatic field effect produced by the split gate voltages facilitates the realization of nanoâswitches that can control the conductance or current in the hybrid SâSm circuits based on 2D semiconducting electron systems. Here, a novel realization of largeâscale scalable, and gate voltage controllable hybrid field effect quantum chips is experimentally demonstrated. Each chip contains arrays of split gate field effect hybrid junctions, that work as conductance switches, and are made from In0.75Ga0.25As quantum wells integrated with Nb superconducting electronic circuits. Each hybrid junction in the chip can be controlled and addressed through its corresponding sourceâdrain and two global split gate contact pads that allow switching between their (super)conducting and insulating states. A total of 18 quantum chips are fabricated with 144 field effect hybrid Nbâ In0.75Ga0.25As 2DEGâNb quantum wires and the electrical response, switching voltage (on/off) statistics, quantum yield, and reproducibility of several devices at cryogenic temperatures are investigated. The proposed integrated quantum device architecture allows control of individual junctions in a large array on a chip useful for emerging cryogenic quantum technologies
Quantized conductance in split gate superconducting quantum point contacts with InGaAs semiconducting two-dimensional electron systems
A quantum point contact (QPC) - a constriction in a semiconducting two-dimensional electron system with a quantized conductance - is a building block of novel spintronic and topological electronic circuits. QPCs can also be used as readout electronics, charge sensors, or switches in quantum nanocircuits. A short and impurity-free constriction with superconducting contacts is a Cooper-pair QPC analogue known as a superconducting quantum point contact (SQPC). The technological development of such quantum devices has been prolonged due to the challenges of maintaining their geometrical requirement and near-unity superconductor-semiconductor interface transparency. Here, we develop advanced nanofabrication, material and device engineering techniques and report on an innovative realization of nanoscale hybrid SQPC arrays with split gate technology in semiconducting 2D electron systems. We exploit the special gate tunability of the quantum wells, and demonstrate the first experimental observation of conductance quantization in hybrid InGaAs-Nb SQPCs. We observe reproducible quantized conductance at zero magnetic fields in multiple quantum nanodevices fabricated in a single chip and systematically investigate the quantum transport of SQPCs at low and high magnetic fields for their potential applications in quantum metrology, for extremely accurate voltage standards, and fault-tolerant quantum technologies