45 research outputs found

    Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease

    Get PDF
    Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections and hospitalization in infants under 1 year of age and there is currently no market-approved vaccine available. For protection against infection, young children mainly depend on their innate immune system and maternal antibodies. Traditionally, antibody-mediated protection against viral infections is thought to be mediated by direct binding of antibodies to viral particles, resulting in virus neutralization. However, in the case of RSV, virus neutralization titers do not provide an adequate correlate of protection. The current lack of understanding of the mechanisms by which antibodies can protect against RSV infection and disease or, alternatively, contribute to disease severity, hampers the design of safe and effective vaccines against this virus. Importantly, neutralization is only one of many mechanisms by which antibodies can interfere with viral infection. Antibodies consist of two structural regions: a variable fragment (Fab) that mediates antigen binding and a constant fragment (Fc) that mediates downstream effector functions via its interaction with Fc-receptors on (innate) immune cells or with C1q, the recognition molecule of the complement system. The interaction with Fc-receptors can lead to killing of virus-infected cells through a variety of immune effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement activation may lead to complement-dependent cytotoxicity (CDC). In addition, both Fc-receptor interactions and complement activation can exert a broad range of immunomodulatory functions. Recent studies have emphasized the importance of Fc-mediated antibody effector functions in both protection and pathogenesis for various infectious agents. In this review article, we aim to provide a comprehensive overview of the current knowledge on Fc-mediated antibody effector functions in the context of RSV infection, discuss their potential role in establishing the balance between protection and pathogenesis, and point out important gaps in our understanding of these processes. Furthermore, we elaborate on the regulation of these effector functions on both the cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody effector functions for the rational design of safe and effective vaccines and monoclonal antibody therapies against RSV

    Comparison of seven commercial RT-PCR diagnostic kits for COVID-19

    Get PDF
    The final months of 2019 witnessed the emergence of a novel coronavirus in the human population. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since spread across the globe and is posing a major burden on society. Measures taken to reduce its spread critically depend on timely and accurate identification of virus-infected individuals by the most sensitive and specific method available, i.e. real-time reverse transcriptase PCR (RT-PCR). Many commercial kits have recently become available, but their performance has not yet been independently assessed. The aim of this study was to compare basic analytical and clinical performance of selected RT-PCR kits from seven different manufacturers (Altona Diagnostics, BGI, CerTest Biotec, KH Medical, PrimerDesign, R-Biopharm AG, and Seegene). We used serial dilutions of viral RNA to establish PCR efficiency and estimate the 95 % limit of detection (LOD95). Furthermore, we ran a panel of SARS-CoV-2-positive clinical samples (n = 13) for a preliminary evaluation of clinical sensitivity. Finally, we used clinical samples positive for non-coronavirus respiratory viral infections (n = 6) and a panel of RNA from related human coronaviruses to evaluate assay specificity. PCR efficiency was ≥96 % for all assays and the estimated LOD95 varied within a 6-fold range. Using clinical samples, we observed some variations in detection rate between kits. Importantly, none of the assays showed cross-reactivity with other respiratory (corona)viruses, except as expected for the SARS-CoV-1 E-gene. We conclude that all RT-PCR kits assessed in this study may be used for routine diagnostics of COVID-19 in patients by experienced molecular diagnostic laboratories

    In Vitro Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not Explain Disease Severity in Infants.

    Get PDF
    Respiratory syncytial virus (RSV) is the leading cause of severe respiratory illness in infants. At this young age, infants typically depend on maternally transferred antibodies (matAbs) and their innate immune system for protection against infections. RSV-specific matAbs are thought to protect from severe illness, yet severe RSV disease occurs mainly below 6 months of age, when neutralizing matAb levels are present. To investigate this discrepancy, we asked if disease severity is related to antibody properties other than neutralization. Some antibody effector functions are mediated via their Fc binding region. However, it has been shown that this binding may lead to antibody-dependent enhancement (ADE) of infection or reduction of neutralization, both possibly leading to more disease. In this study, we first showed that high levels of ADE of RSV infection occur in monocytic THP-1 cells in the presence of RSV antibodies and that neutralization by these antibodies was reduced in Vero cells when they were transduced with Fc gamma receptors. We then demonstrated that antibodies from cotton rats with formalin-inactivated (FI)-RSV-induced pulmonary pathology were capable of causing ADE. Human matAbs also caused ADE and were less neutralizing in vitro in cells that carry Fc receptors. However, these effects were unrelated to disease severity because they were seen both in uninfected controls and in infants hospitalized with different levels of RSV disease severity. We conclude that ADE and reduction of neutralization are unlikely to be involved in RSV disease in infants with neutralizing matAbs.IMPORTANCE It is unclear why severity of RSV disease peaks at the age when infants have neutralizing levels of maternal antibodies. Additionally, the exact reason for FI-RSV-induced enhanced disease, as seen in the 1960s vaccine trials, is still unclear. We hypothesized that antibodies present under either of these conditions could contribute to disease severity. Antibodies can have effects that may lead to more disease instead of protection. We investigated two of those effects: antibody-dependent enhancement of infection (ADE) and neutralization reduction. We show that ADE occurs in vitro with antibodies from FI-RSV-immunized RSV-infected cotton rats. Moreover, passively acquired maternal antibodies from infants had the capacity to induce ADE and reduction of neutralization. However, no clear association with disease severity was seen, ruling out that these properties explain disease in the presence of maternal antibodies. Our data contribute to a better understanding of the impact of antibodies on RSV disease in infants

    Influenza Infection in Ferrets with SARS-CoV-2 Infection History

    Get PDF
    Nonpharmaceutical interventions (NPIs) to contain the SARS-CoV-2 pandemic drastically reduced human-to-human interactions, decreasing the circulation of other respiratory viruses, as well. Consequently, influenza virus circulation, which is normally responsible for 3 to 5 million hospitalizations per year globally, was significantly reduced. With the downscaling of the NPI countermeasures, there is a concern for increased influenza disease, particularly in individuals suffering from postacute effects of SARS-CoV-2 infection. To investigate this, we performed a sequential influenza H1N1 infection 4 weeks after an initial SARS-CoV-2 infection in ferrets. Upon H1N1 infection, ferrets that were previously infected with SARS-CoV-2 showed an increased tendency to develop clinical signs, compared to the control H1N1-infected animals. A histopathological analysis indicated only a slight increase for type II pneumocyte hyperplasia and bronchitis. Thus, the effects of the sequential infection appeared minor. However, ferrets were infected with B.1.351-SARS-CoV-2, the beta variant of concern, which replicated poorly in our model. The histopathology of the respiratory organs was mostly resolved 4 weeks after the SARS-CoV-2 infection, with only reminiscent histopathological features in the upper respiratory tract. Nevertheless, SARS-CoV-2 specific cellular and humoral responses were observed, confirming an established infection. On account of a modest trend toward the enhancement of the influenza disease, even upon a mild SARS-CoV-2 infection, our findings suggest that a stronger SARS-CoV-2 infection and its consequent, long-term effects could have a greater impact on the outcome of disease after a sequential influenza infection. Hence, the influenza vaccination of individuals suffering from postacute SARS-CoV-2 infection effects may be considered an avertible measure for such a scenario. IMPORTANCE During the COVID-19 pandemic, the use of face masks, social distancing, and isolation were effective not only in decreasing the circulation of SARS-CoV-2 but also in reducing other respiratory viruses, such as influenza. With fewer restrictions currently in place, influenza is slowly returning. In the meantime, people who are still suffering from long-COVID could be more vulnerable to an influenza virus infection and could develop a more severe influenza disease. This study provides directions to the effect of a previous SARS-CoV-2 exposure on influenza disease severity in a ferret model. This model is highly valuable to test sequential infections under controlled settings for translation to humans. We could not induce clear long-term COVID-19 effects, as the SARS-CoV-2 infections in the ferrets were mild. However, we still observed a slight increase in influenza disease severity compared to ferrets that had not encountered SARS-CoV-2 before. Therefore, it may be advisable to include long-COVID patients as a risk group for influenza vaccination

    Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry

    No full text
    Abstract Background The spike protein (S) of SARS Coronavirus (SARS-CoV) mediates entry of the virus into target cells, including receptor binding and membrane fusion. Close to or in the viral membrane, the S protein contains three distinct motifs: a juxtamembrane aromatic part, a central highly hydrophobic stretch and a cysteine rich motif. Here, we investigate the role of aromatic and hydrophobic parts of S in the entry of SARS CoV and in cell-cell fusion. This was investigated using the previously described SARS pseudotyped particles system (SARSpp) and by fluorescence-based cell-cell fusion assays. Results Mutagenesis showed that the aromatic domain was crucial for SARSpp entry into cells, with a likely role in pore enlargement. Introduction of lysine residues in the hydrophobic stretch of S also resulted in a block of entry, suggesting the borders of the actual transmembrane domain. Surprisingly, replacement of a glycine residue, situated close to the aromatic domain, with a lysine residue was tolerated, whereas the introduction of a lysine adjacent to the glycine, was not. In a model, we propose that during fusion, the lateral flexibility of the transmembrane domain plays a critical role, as do the tryptophans and the cysteines. Conclusions The aromatic domain plays a crucial role in the entry of SARS CoV into target cells. The positioning of the aromatic domain and the hydrophobic domain relative to each other is another essential characteristic of this membrane fusion process.</p

    GxxxG Motif of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Transmembrane Domain Is Not Involved in Trimerization and Is Not Important for Entryâ–¿

    No full text
    Recently, a paper was published in which it was proposed that the GxxxG motif of the severe acute respiratory syndrome (SARS) coronavirus spike (S) protein transmembrane domain plays a vital role in oligomerization of the protein (E. Arbely, Z. Granot, I. Kass, J. Orly, and I. T. Arkin, Biochemistry 45:11349-11356, 2006). Here, we show that the GxxxG motif is not involved in SARS S oligomerization by trimerization analysis of S GxxxG mutant proteins. In addition, the capability of S to mediate entry of SARS S-pseudotyped particles overall was affected moderately in the mutant proteins, also arguing for a nonvital role for the GxxxG motif in SARS coronavirus entry

    Viral Infection of Human Natural Killer Cells

    No full text
    Natural killer (NK) cells are essential in the early immune response against viral infections, in particular through clearance of virus-infected cells. In return, viruses have evolved multiple mechanisms to evade NK cell-mediated viral clearance. Several unrelated viruses, including influenza virus, respiratory syncytial virus, and human immunodeficiency virus, can directly interfere with NK cell functioning through infection of these cells. Viral infection can lead to immune suppression, either by downregulation of the cytotoxic function or by triggering apoptosis, leading to depletion of NK cells. In contrast, some viruses induce proliferation or changes in the morphology of NK cells. In this review article, we provide a comprehensive overview of the viruses that have been reported to infect NK cells, we discuss their mechanisms of entry, and describe the interference with NK cell effector function and phenotype. Finally, we discuss the contribution of virus-infected NK cells to viral load. The development of specific therapeutics, such as viral entry inhibitors, could benefit from an enhanced understanding of viral infection of NK cells, opening up possibilities for the prevention of NK cell infection
    corecore