420 research outputs found

    The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution

    Get PDF

    Towards the ideal GMP: Homologous recombination and marker gene excision

    Get PDF
    A mayor aim of biotechnology is the establishment of techniques for the precise manipulation of plant genomes. Two major efforts have been undertaken over the last dozen years, one to set up techniques for site-specific alteration of the plant genome via homologous recombination (Ā«gene targetingĀ») and the other for the removal of selectable marker genes from transgenic plants. Unfortunately, despite multiple promising approaches that will be shortly described in this review no feasible gene targeting technique has been developed till now for crop plants. In contrast, several alternative procedures have been established successfully to remove selectable markers from plant genomes. Intriguingly besides techniques relying on transposons and site-specific recombinases, recent results indicate that homologous recombination might be a valuable alternative for the excision of marker genes

    Marker-free transgenic plants

    Get PDF
    Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, selection is based on antibiotic or herbicide resistance. Due mainly to consumer concerns, a suite of strategies (site-specific recombination, homologous recombination, transposition and co-transformation) have been developed to eliminate the marker gene from the nuclear or chloroplast genome after selection. Current efforts concentrate on systems where marker genes are eliminated efficiently soon after transformation. Alternatively, transgenic plants are produced by the use of marker genes that do not rely on antibiotic or herbicide resistance but instead promote regeneration after transformation. Here, the merits and shortcomings of different approaches and possible directions for their future development are discussed

    Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and non-homologous end-joining

    Get PDF
    Using the rare-cutting endonuclease I-SceI we were able to demonstrate before that the repair of a single double-strand break (DSB) in a plant genome can be mutagenic due to insertions and deletions. However, during replication or due to irradiation several breaks might be induced simultaneously. To analyze the mutagenic potential of such a situation we established an experimental system in tobacco harboring two unlinked transgenes, each carrying an I-SceI site. After transient expression of I-SceI a kanamycin-resistance marker could be restored by joining two previously unlinked broken ends, either by homologous recombination (HR) or by nonhomologous end joining (NHEJ). Indeed, we were able to recover HR and NHEJ events with similar frequencies. Despite the fact that no selection was applied for joining the two other ends, the respective linkage could be detected in most cases tested, demonstrating that the respective exchanges were reciprocal. The frequencies obtained indicate that DSB-induced translocation is up to two orders of magnitude more frequent in somatic cells than ectopic gene conversion. Thus, DSB-induced reciprocal exchanges might play a significant role in plant genome evolution. The technique applied in this study may also be useful for the controlled exchange of unlinked sequences in plant genomes

    Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells

    Get PDF
    To analyze genomic changes resulting from doubleā€strand break (DSB) repair, transgenic tobacco plants were obtained that carried in their genome a restriction site of the rare cutting endonuclease Iā€SceI within a negative selectable marker gene. After induction of DSB repair via Agrobacteriumā€mediated transient expression of Iā€SceI, plant cells were selected that carried a lossā€ofā€function phenotype of the marker. Surprisingly, in addition to deletions, in a number of cases repair was associated with the insertion of unique and repetitive genomic sequences into the break. Thus, DSB repair offers a mechanism for spreading different kinds of sequences into new chromosomal positions. This may have evolutionary consequences particularly for plants, as genomic alterations occurring in meristem cells can be transferred to the next generation. Moreover, transfer DNA (Tā€DNA), carrying the open reading frame of Iā€SceI, was found in several cases to be integrated into the transgenic Iā€SceI site. This indicates that DSB repair also represents a pathway for the integration of Tā€DNA into the plant genome

    What comparative genomics tells us about the evolution of the eukaryotic recombination machinery

    Get PDF
    The growing number of completely deciphered genomic sequences provides an enormous reservoir of data, which can be used for addressing questions related to functional and evolutionary biology. The wealth of this approach is documented by the fast growing numbers of recent publications in the field of evolutionary biology based on comparative genomics. Many proteins of the recombination machinery are conserved between plants, fungi and animals but some of them also show remarkable differences regarding their presence, copy number or molecular structure. For example, the protein responsible for double strand break (DSB) induction during meiosis, SPO11, which is related to the subunit A of the archaebacterial topoisomerase VI, is coded by a single gene in animals and fungi. In contrast, plants harbour three distantly related homologues, which seem to have non-redundant functions either in meiosis or in somatic cells and are indispensable for viability. Moreover, plants possess a homologue of the subunit B of the archaebacterial topoisomerase VI, not present in other eukaryotes. We also summarise the recent progress in the usage of genomic data to analyse the evolution of other DNA recombination factors. Finally, several recent studies report on a strong conservation of a reasonable number of intron positions between plants, animals and fungi. This kind of study provides a basis for comparative genomic analyses across kingdoms and demonstrates the existence of ancient introns, a topic of intensive debate

    Differences in the processing of DNA ends in Arabidopsis and tobacco and its implication for genome evolution

    Get PDF
    Surprising species-specific differences in non-homologous end-joining (NHEJ) of genomic double-strand breaks (DSBs) have been reported for the two dicotyledonous plants Arabidopsis thaliana and Nicotiana tabacum. In Arabidopsis deletions were, on average, larger than in tobacco and not associated with insertions. To establish the molecular basis of the phenomenon we analysed the fate of free DNA ends in both plant species by biolistic transformation of leaf tissue with linearized plasmid molecules. Southern blotting indicated that, irrespective of the nature of the ends (blunt, 5\u27 or 3\u27 overhangs), linearized full-length DNA molecules were, on average, more stable in tobacco than in Arabidopsis. The relative expression of a Ī²-glucuronidase gene encoded by the plasmid was similar in both plant species when the break was distant from the marker gene. However, if a DSB was introduced between the promoter and the open reading frame of the marker, transient expression was halved in Arabidopsis as compared to tobacco. These results indicate that free DNA ends are more stable in tobacco than in Arabidopsis, either due to lower DNA exonuclease activity or due to a better protection of DNA break ends or both. Exonucleolytic degradation of DNA ends might be a driving force in the evolution of genome size as the Arabidopsis genome is more than twenty times smaller than the tobacco genome

    The RecQ gene family in plants

    Get PDF
    structure and function. They are 30ā€“50 DNA helicases resolving different recombinogenic DNA structures. The RecQ helicases are key factors in a number of DNA repair and recombination pathways involved in the maintenance of genome integrity. In eukaryotes the number of RecQ genes and the structure of RecQ proteins vary strongly between organisms. Therefore, they have been named RecQ-like genes. Knockouts of several RecQ-like genes cause severe diseases in animals or harmful cellular phenotypes in yeast. Until now the largest number of RecQ-like genes per organism has been found in plants. Arabidopsis and rice possess seven different RecQ-like genes each. In the almost completely sequenced genome of the moss Physcomitrella patens at least five RecQ-like genes are present. One of the major present and future research aims is to define putative plant-specific functions and to assign their roles in DNA repair and recombination pathways in relation to RecQ genes from other eukaryotes. Regarding their intron positions, the structures of six RecQ-like genes of dicots and monocots are virtually identical indicating a conservation over a time scale of 150 million years. In contrast to other eukaryotes one gene (RecQsim) exists exclusively in plants. It possesses an interrupted helicase domain but nevertheless seems to have maintained the RecQ function. Owing to a recent gene duplication besides the AtRecQl4A gene an additional RecQ-like gene (AtRecQl4B) exists in the Brassicaceae only. Genetic studies indicate that a AtRecQl4A knockout results in sensitivity to mutagens as well as an hyperrecombination phenotype. Since AtRecQl4B was still present, both genes must have non-redundant roles. Analysis of plant RecQ-like genes will not only increase the knowledge on DNA repair and recombination, but also on the evolution and radiation of protein families

    Knocking out consumer concerns and regulator\u27s rules: Efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals

    Get PDF
    Selection-free genome editing using Cas9 ribonucleoprotein embryo bombardment has been achieved for maize and wheat. This is a breakthrough that should make new breeding technologies more acceptable for worldwide use

    Green light for gene targeting in plants

    Get PDF
    • ā€¦
    corecore