2 research outputs found

    Fe-doped SnO2: A Quantum-chemical Approach

    Get PDF
    We report first-principles results obtained on Fe impurity incorporation into the SnO2 material. Different impurity concentrations have been taken into consideration when computing structural, electronic and magnetic properties of the material. DFT + U methodology within the GGA approach applied to a 96-atom supercell allowed us to establish the equilibrium geometry of the system, which consists of six defectnearest oxygens shifting towards the Fe impurity. Antiparallel magnetic alignment between the electrons of the Fe 3d and impurity-neighbouring O 2p atomic orbitals forming the FeO6 complex has been found

    Fe-doped SnO2: A Quantum-chemical Approach

    Get PDF
    We report first-principles results obtained on Fe impurity incorporation into the SnO2 material. Different impurity concentrations have been taken into consideration when computing structural, electronic and magnetic properties of the material. DFT + U methodology within the GGA approach applied to a 96-atom supercell allowed us to establish the equilibrium geometry of the system, which consists of six defectnearest oxygens shifting towards the Fe impurity. Antiparallel magnetic alignment between the electrons of the Fe 3d and impurity-neighbouring O 2p atomic orbitals forming the FeO6 complex has been found
    corecore