2,070 research outputs found

    Probing anisotropic superfluidity of rashbons in atomic Fermi gases

    Full text link
    Motivated by the prospect of realizing a Fermi gas of 40^{40}K atoms with a synthetic non-Abelian gauge field, we investigate theoretically a strongly interacting Fermi gas in the presence of a Rashba spin-orbit coupling. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We show that this anisotropic superfluidity can be probed via measuring the momentum distribution and single-particle spectral function in a trapped atomic 40^{40}K cloud near a Feshbach resonance.Comment: 4 pages, 5 figure

    Probing Majorana fermions in spin-orbit coupled atomic Fermi gases

    Full text link
    We examine theoretically the visualization of Majorana fermions in a two-dimensional trapped ultracold atomic Fermi gas with spin-orbit coupling. By increasing an external Zeeman field, the trapped gas transits from non-topological to topological superfluid, via a mixed phase in which both types of superfluids coexist. We show that the zero-energy Majorana fermion, supported by the topological superfluid and localized at the vortex core, is clearly visible through (i) the core density and (ii) the local density of states, which are readily measurable in experiment. We present a realistic estimate on experimental parameters for ultracold 40^{40}K atoms.Comment: 4 pages, 4 figure

    Gapless topological Fulde-Ferrell superfluidity induced by in-plane Zeeman field

    Get PDF
    Topological superfluids are recently discovered quantum matters that host topologically protected gapless edge states known as Majorana fermions - exotic quantum particles that act as their own anti-particles and obey non-Abelian statistics. Their realizations are believed to lie at the heart of future technologies such as fault-tolerant quantum computation. To date, the most efficient scheme to create topological superfluids and Majorana fermions is based on the Sau-Lutchyn-Tewari-Das Sarma model with a Rashba-type spin-orbit coupling on the }\textbf{\textit{x-y}}\textbf{ plane and a large out-of-plane (perpendicular) Zeeman field along the }\textbf{\textit{z}}\textbf{-direction. Here we propose an alternative setup, where the topological superfluid phase is driven by applying an in-plane Zeeman field. This scheme offers a number of new features, notably Cooper pairings at finite centre-of-mass momentum (i.e., Fulde-Ferrell pairing) and gapless excitations in the bulk. As a result, a novel gapless topological quantum matter with inhomogeneous pairing order parameter appears. It features unidirected Majorana surface states at boundaries, which propagate in the same direction and connect two Weyl nodes in the bulk. We demonstrate the emergence of such an exotic topological matter and the associated Majorana fermions in spin-orbit coupled atomic Fermi gases and determine its parameter space. The implementation of our scheme in semiconductor/superconductor heterostructures is briefly discussed.Comment: 8 pages, 5 figure

    Universal impurity-induced bound state in topological superfluids

    Get PDF
    We predict a universal mid-gap bound state in topological superfluids, induced by either non-magnetic or magnetic impurities in the strong scattering limit. This universal state is similar to the lowest-energy Caroli-de Gennes-Martricon bound state in a vortex core, but is bound to localized impurities. We argue that the observation of such a universal bound state can be a clear signature for identifying topological superfluids. We theoretically examine our argument for a spin-orbit coupled ultracold atomic Fermi gas trapped in a two-dimensional harmonic potential, by performing extensive self-consistent calculations within the mean-field Bogoliubov-de Gennes theory. A realistic scenario for observing universal bound state in ultracold 40^{40}K atoms is proposed.Comment: 5 pages + 4 figures; published in PRL; see the relevant study in 1D: Phys. Rev. A 87, 013622 (2013); see also the accompanying Physics Synopsis: http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.02040

    Radio-frequency spectroscopy of weakly bound molecules in spin-orbit coupled atomic Fermi gases

    Full text link
    We investigate theoretically radio-frequency spectroscopy of weakly bound molecules in an ultracold spin-orbit-coupled atomic Fermi gas. We consider two cases with either equal Rashba and Dresselhaus coupling or pure Rashba coupling. The former system has been realized very recently at Shanxi University [Wang et al., arXiv:1204.1887] and MIT [Cheuk et al., arXiv:1205.3483]. We predict realistic radio-frequency signals for revealing the unique properties of anisotropic molecules formed by spin-orbit coupling.Comment: 11 pages, 7 figure

    Half-quantum vortex state in a spin-orbit coupled Bose-Einstein condensate

    Full text link
    We investigate theoretically the condensate state and collective excitations of a two-component Bose gas in two-dimensional harmonic traps subject to isotropic Rashba spin-orbit coupling. In the weakly interacting regime when the inter-species interaction is larger than the intra-species interaction (g>gg_{\uparrow\downarrow}>g), we find that the condensate ground state has a half-quantum-angular-momentum vortex configuration with spatial rotational symmetry and skyrmion-type spin texture. Upon increasing the interatomic interaction beyond a threshold gcg_{c}, the ground state starts to involve higher-order angular momentum components and thus breaks the rotational symmetry. In the case of g<gg_{\uparrow\downarrow}<g, the condensate becomes unstable towards the superposition of two degenerate half-quantum vortex states. Both instabilities (at g>gcg>g_{c} and g<gg_{\uparrow\downarrow}<g) can be determined by solving the Bogoliubov equations for collective density oscillations of the half-quantum vortex state, and by analyzing the softening of mode frequencies. We present the phase diagram as functions of the interatomic interactions and the spin-orbit coupling. In addition, we directly simulate the time-dependent Gross-Pitaevskii equation to examine the dynamical properties of the system. Finally, we investigate the stability of the half-quantum vortex state against both the trap anisotropy and anisotropy in the spin-orbit coupling term.Comment: 13 pages, 18 figure

    Genetic Predictors of Clinical Outcomes in Non-Small Cell Lung Cancer Patients

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use

    Inhibition of activity of GABA transporter GAT1 by δ-opioid receptor

    Get PDF
    Analgesia is a well-documented effect of acupuncture. A critical role in pain sensation plays the nervous system, including the GABAergic system and opioid receptor (OR) activation. Here we investigated regulation of GABA transporter GAT1 by δOR in rats and in Xenopus oocytes. Synaptosomes of brain from rats chronically exposed to opiates exhibited reduced GABA uptake, indicating that GABA transport might be regulated by opioid receptors. For further investigation we have expressed GAT1 of mouse brain together with mouse δOR and μOR in Xenopus oocytes. The function of GAT1 was analyzed in terms of Na(+)-dependent [(3)H]GABA uptake as well as GAT1-mediated currents. Coexpression of δOR led to reduced number of fully functional GAT1 transporters, reduced substrate translocation, and GAT1-mediated current. Activation of δOR further reduced the rate of GABA uptake as well as GAT1-mediated current. Coexpression of μOR, as well as μOR activation, affected neither the number of transporters, nor rate of GABA uptake, nor GAT1-mediated current. Inhibition of GAT1-mediated current by activation of δOR was confirmed in whole-cell patch-clamp experiments on rat brain slices of periaqueductal gray. We conclude that inhibition of GAT1 function will strengthen the inhibitory action of the GABAergic system and hence may contribute to acupuncture-induced analgesia
    corecore