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We predict a universal midgap bound state in topological superfluids, induced by either nonmagnetic or

magnetic impurities in the strong scattering limit. This universal state is similar to the lowest-energy

Caroli–de Gennes–Martricon bound state in a vortex core, but is bound to localized impurities. We argue

that the observation of such a universal bound state can be a clear signature for identifying topological

superfluids. We theoretically examine our argument for a spin-orbit coupled ultracold atomic Fermi gas

trapped in a two-dimensional harmonic potential by performing extensive self-consistent calculations

within the mean-field Bogoliubov–de Gennes theory. A realistic scenario for observing a universal bound

state in ultracold 40K atoms is proposed.
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Topological superfluids are of great interest [1]. They
are promising candidates that host Majorana fermions [2],
which lie at the heart of topological quantum information
and computation, due to their exotic non-Abelian exchange
statistics [3–5]. To date, there have been a number of
proposals for practical realizations of topological super-
fluids, including pþ ip superconductors [6,7], surfaces of
three-dimensional topological insulators [8–10] or one-
dimensional (1D) spin-orbit coupled nanowires [11,12]
in proximity to an s-wave superconductor, and two-
dimensional (2D) [13–16] or 1D [17–19] spin-orbit
coupled atomic Fermi gases near Feshbach resonances.
All these proposals are appealing and are to be examined
experimentally. In fact, recent experimental results on the
tunneling spectroscopy of semiconductor InSb nanowires
in a magnetic field placed in contact with a superconduct-
ing electrode [20] may already suggest the existence of
topological superfluids and Majorana fermions. However,
unambiguous characterizations of the topological proper-
ties of the nanowires are still missing.

In this Letter, we propose that a universal midgap bound
state, induced by strong nonmagnetic or magnetic impurity
scattering, could provide a clear signature for the existence
of topological superfluids. In the solid state, impurities are
widely known to serve as an important local probe that
characterizes the quantum state of hosting systems [21].
Individual impurities have been used to determine the
superconducting pairing symmetry of unconventional
non-s-wave superconductors [22] and to demonstrate
Friedel oscillations on a Be(0001) surface [23]. In strongly
correlated many-body systems, they may be employed to
pin one of the competing orders [24]. Here, unique to
topological superfluids, we predict that a single impurity

with a sufficiently strong scattering strength can create a
universal midgap state bound to the impurity. It resembles
the lowest-energy Caroli–de Gennes–Martricon (CdGM)
bound state inside a vortex core [25]. For small order
parameters, where the bound state energy E is nearly
zero, the wave function of the universal bound state is
found to closely follow the symmetry of that of Majorana
fermions [16].
In our work, the emergence of a universal impurity-

induced bound state is examined theoretically in an inter-
acting spin-orbit coupled ultracold atomic Fermi gas in 2D
harmonic traps [16]. We perform numerically extensive
self-consistent calculations by using the fully microscopic
Bogoliubov–de Gennes (BdG) theory, to explore the
details of the universal bound state. This specific choice
of topological superfluids is motivated by the recent real-
ization of spin-orbit coupling in atomic Fermi gases of 40K
[26] and 6Li atoms [27]. Benefiting from the high controll-
ability in the interaction, geometry, and purity in cold-atom
experiments, 2D spin-orbit coupled atomic Fermi gases are
arguably the best candidate for observing the predicted
universal bound state. Our results, however, should be
applicable as well to various topological superfluids that
are believed to exist in the solid state. We propose a
realistic scenario for creating a universal bound state in
40K atoms and discuss briefly the relevance of our results to
other solid state systems.
Mean-field BdG equation.—To start, we consider a

trapped 2D atomic Fermi gas with a Rashba-type spin-orbit
coupling and a Zeeman field h, which is believed to be a
topological superfluid when the Zeeman field exceeds a
threshold hc [16]. The model Hamiltonian of the system is
given byH ¼ R

dr½H 0ðrÞ þH IðrÞ þH impðrÞ�, where
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is the single-particle Hamiltonian density in the presence
of Rashba spin-orbit coupling VSOðrÞ ¼ �i�ð@y þ i@xÞ,
H IðrÞ ¼ U0c

y
" ðrÞc y

# ðrÞc #ðrÞc "ðrÞ represents the interac-
tion, and H impðrÞ ¼ P

�¼";#c
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impðrÞc � describes the

potential scattering due to the impurity. Here, c y
";# are

respectively the creation field operators for the spin-up
and spin-down atoms and H S

�ðrÞ � �@
2r2=ð2MÞ þ

M!2r2=2��� h�z is the single-particle Hamiltonian
in a 2D harmonic trapping potentialM!2r2=2, in reference
to the chemical potential �. We have used the standard
s-wave contact interaction between atoms with opposite
spins, whose strengthU0 is to be regularized by the binding

energy of the two-body bound state Ea [16,28]. For com-
putational simplicity, we place an impurity at the origin and
consider either a deltalike scattering potential, V�

impðrÞ ¼
V�
imp�ðrÞ, or a Gaussian-shape potential with width d,

V�
impðrÞ ¼ ½V�

imp=ð�d2Þ� exp½�r2=d2�. In the case of a

magnetic impurity, we take the potential strength V"
imp ¼

�V#
imp ¼ �Vimp, while for the nonmagnetic impurity,

V"
imp ¼ V#

imp ¼ �Vimp. We have checked both positive

and negative values of Vimp and have observed very similar

results at large jVimpj. Hereafter, we focus on the case with
Vimp > 0.

We solve the low-energy fermionic quasiparticles of the
model Hamiltonian by using the standard mean-field BdG
approach, H BdG��ðrÞ ¼ E���ðrÞ, where

H BdG ¼

H S
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is the BdG Hamiltonian, ��ðrÞ ¼ ½u"�; u#�; v"�; v#��T ,
and E� are the Nambu spinor wave functions and
energies for quasiparticles, respectively. Within the mean
field, the order parameter takes the form �ðrÞ ¼
�ðU0=2ÞP�½u"�v�

#�fðE�Þ þ u#�v�
"�fð�E�Þ� and, is to be

solved self-consistently together with the atomic densities,
n�ðrÞ ¼ ð1=2ÞP�½ju��j2fðE�Þ þ jv��j2fð�E�Þ�. Here
fðxÞ � 1=ðex=kBT þ 1Þ is the Fermi distribution function
at temperature T. The chemical potential �, implicit in
H S

�ðrÞ, can be determined by the total number of atoms N
using the number equation

R
dr½n"ðrÞ þ n#ðrÞ� ¼ N. As the

impurity is placed at the origin r ¼ 0, the BdG
Hamiltonian preserves rotational symmetry. Therefore,
we take �ðrÞ ¼ �ðrÞ and decouple the BdG equation
into different angular momentum channels indexed by
an integer m, with which the quasiparticle wave functions
become ½u"�ðrÞ; u#�ðrÞei’; v"�ðrÞei’; v#�ðrÞ�eim’=

ffiffiffiffiffiffiffi
2�

p
. By

expanding u��ðrÞ and v��ðrÞ in the basis of 2D harmonic
oscillators, the solution of the BdG equation converts to a
matrix diagonalization problem. Numerically we have to
truncate the summation over energy levels �. This is done
by introducing a high energy cutoff Ec, above which a local
density approximation is used for high-lying wave func-
tions [29]. We have checked that such a hybrid procedure is
numerically very efficient.

For the results presented here, we have solved self-
consistently the BdG equation for a cloud with N ¼ 400
atoms at zero temperature. In 2D harmonic traps, it is

convenient to use the Fermi radius rF ¼ ð4NÞ1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðM!Þp

and Fermi energy EF ¼ @
2k2F=ð2MÞ ¼ ffiffiffiffi

N
p

@! as the units

for length and energy, respectively. The strength of the
impurity scattering potential V�

imp will be measured in units

of r2FEF. We have taken an interaction parameter Ea ¼
0:2EF and a spin-orbit coupling strength �kF=EF ¼ 1.
With these parameters, the whole Fermi cloud becomes a
topological superfluid when the Zeeman field is larger than
a threshold hc ’ 0:57EF [16]. Let us first consider the
localized impurities with a deltalike scattering potential
V�
imp�ðrÞ.
Emergence of a universal impurity bound state.—

According to Anderson’s theorem [30], a conventional
s-wave superfluid can barely be affected by nonmagnetic
impurities. In contrast, magnetic impurities can break the
time-reversal symmetry of the superfluid and act as pair
breakers, leading to the appearance of a midgap state—the
so-called Yu-Shiba state—which is bound to localized im-
purities inside the pairing gap [31,32]. The energy of such a
midgap bound state is determined by the strength of the
impurity scattering potential Vimp. As Vimp increases, the

Yu-Shiba state moves from the upper gap edge to the lower
gap edge for the spin-up atoms andmoves oppositely for the
spin-down atoms. In the presence of Rashba spin-orbit
coupling, we have confirmed numerically that the above
statements continue to hold, even under a Zeeman field, if
the Fermi cloud is not a topological superfluid. For a typical
parameterh ¼ 0:2EF, with an increase of the strength of the
magnetic impurity, we find that the position of the Yu-Shiba
state moves very quickly from one gap edge to the other.
In contrast, once the Zeeman field is beyond the thresh-

old hc so that the whole Fermi cloud becomes a topological
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superfluid, we observe an entirely different behavior, as
revealed in Fig. 1. For nonmagnetic impurities, an un-
expected bound state appears from one gap edge as the
impurity strength is larger than a critical strength Vimp *

0:004r2FEF. As Vimp increases, the bound state moves

towards, but never reaches, zero energy. In fact, its energy
saturates quickly to E ’ 0:11EF ’ �2

0=EF, where �0 ’
0:307EF is the gap parameter at the trap center in the
absence of an impurity. For magnetic impurities, the de-
pendence of the position of the Yu-Shiba state on the
impurity strength is also strongly modified: at large impu-
rity scattering, the Yu-Shiba state now moves to E ’
�2

0=EF, nearly at the same energy as the new bound state

induced by strong nonmagnetic impurities. This coinci-
dence in the energy of bound states clearly indicates that
in topological superfluids a universal bound state emerges
in the limit of strong impurity scattering.

Origin of the universal state.—The appearance of bound
states implies that the gap parameter would be strongly
depleted close to the impurity. In Fig. 2, we examine
the spatial profile of the order parameter near the impurity.

For a weak nonmagnetic impurity, as shown in Fig. 2(a),
the gap parameter is already strongly modified at Vimp *

0:004r2FEF. Seen as a scattering potential for Bogoliubov
quasiparticles [25], the gap parameter hence starts to
accommodate a bound state. For a weak magnetic impurity
[Fig. 2(b)], the pair-breaking effect is always significant
enough to induce a Yu-Shiba bound state, as anticipated. In
the strong scattering limit, it is remarkable that the gap
parameter acquires a universal spatial profile, despite the
type and strength of the impurities. It is fully depleted at
the impurity site and has a very similar distribution as
the gap parameter inside a vortex core. Therefore, we
anticipate that the observed universal bound state would
resemble the well-known CdGM vortex-core bound states
[25]. Indeed, the energy of the universal impurity state,
E ’ �2

0=EF, is of the same order as that of the CdGM

bound states.
Now, the formation of the universal bound state can be

easily understood from its analogy with the CdGM vortex-
core state. As the gap parameter is fully suppressed at the
impurity site, we have a local point defect (i.e., vacuum)
that is topologically trivial. Due to the topological nature of
the Fermi cloud away from the impurity, there would be an
interface between the nontopological and topological com-
ponents, which can host a gapless Majorana edge state
[33]. The observed universal impurity state is precisely
such a Majorana edge mode. However, its energy is not
exactly zero due to the finite confinement of the system
[34]. As derived analytically by Stone and Roy [35] (see
also Ref. [34]), the dispersion relation of edge states in
topological superfluids with a confinement length � is
given by EðmÞ ¼ �ðmþ 1=2Þ�0=ðkF�Þ. By assuming a
characteristic length �� @vF=�0 for the gap parameter
distribution [25], where vF is the Fermi velocity, we esti-
mate that E��2

0=EF, in good agreement with the

observed energy of the universal bound state.

FIG. 2 (color online). Gap parameter as a function of impurity
strength Vimp (in units of r2FEF), for a nonmagnetic impurity

(a) and for a magnetic impurity (b). In the limit of strong
impurity scattering, the gap parameter has the same spatial
distribution, whether the impurity is nonmagnetic or magnetic.

FIG. 1 (color online). Bound states induced by a nonmagnetic
deltalike impurity (a) and by a magnetic deltalike impurity (b),
V�
impðrÞ ¼ V�

imp�ðrÞ, in a topological superfluid at h ¼ 0:7EF, as

shown by the peaks in the total local density of states (LDOS)
�ðr; EÞ at kFr ¼ 2. Here, �ðr; EÞ ¼ P

���ðr; EÞ and ��ðr; EÞ ¼
ð1=2ÞP�½ju��j2�ðE� E�Þ þ jv��j2�ðEþ E�Þ�. The dashed

and dash-dotted lines highlight the resonance peak position or
the energy of bound states. From bottom to top, the impurity
strength increases from Vimp ¼ 0 to 0:011r2FEF, in steps of

0:001r2FEF. The curves are offset for clarity, except for the
lowest curve at Vimp ¼ 0. (c) The energy of bound states as a

function of the impurity strength, in units of the gap parameter at
the trap center in the absence of impurity, �0 ’ 0:307EF.
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In Fig. 3, we examine the wave function of the universal
bound state. Indeed, it satisfies approximately the symme-
try u�ðrÞ ¼ v�

�ðrÞ, which should be obeyed by zero-energy
Majorana fermions. In the inset, we present the LDOS
close to the impurity site. The universal bound state
is clearly visible within the gap. Experimentally, the
LDOS may be measured through spatially resolved
radio–frequency (rf) spectroscopy [36], which provides a
cold-atom analog of the widely used scanning tunneling
microscope in the solid state [37]. The wave function of the
universal bound state can therefore be determined from the
real-space structure of the LDOS within the gap.

Loss of university.—The universality of the impurity-
induced bound state can be lost if the impurity scattering
has a finite width. In this case, a hole will be created in the
strong impurity scattering limit, instead of a point defect.
Therefore, there are a series of edge states. The wave
function and energy of these edge states would depend
critically on the shape and strength of the impurity poten-
tial. In Fig. 4, we show the bound states induced by a
nonmagnetic (a) and a magnetic (b) Gaussian impurity,
with a finite width kFd ¼ 0:5. It is readily seen that with an
increase in the impurity strength the bound state never
approaches a universal limit. We have checked that for
larger widths, the LDOS becomes very complicated, as
more and more bound states appear.

Experimental proposal.—We now show that ultracold
Fermi gases of 40K atoms are a potential candidate for
observing the predicted universal impurity-induced bound
state. A three-dimensional spin-orbit coupled 40KFermi gas
was recently realized at Shanxi University [26]. By loading
a pancakelike optical trap Vðr; zÞ ¼ M½!2r2 þ!2

zz
2�=2

with trapping frequencies !z � ! [38] or using a deep
1D optical lattice [39], a 2D topological superfluid with a
number of atoms N � 1000 and size rF � 100 �mmay be

prepared at a temperature of about 10 nK. It is convenient to
create the deltalike impurity potential by using a dimple
laser beam that has a sufficiently narrow beam width
d < 1 �m [40], so that kFd � 1. By suitably tuning its
frequency, the scattering potential caused by the laser beam
can be attractive or repulsive for different spins. Thus, both
nonmagnetic and magnetic impurities can be simulated.
The resulting universal bound state may be visualized
by using the standard tool of spatially resolved rf spectro-
scopy. All the techniques required to observe the predicted
universal state are therefore within the reach of current
experiments.
Application to other solid state systems.—Our results

are apparently applicable to the triplet superconductor
Sr2RuO4. For the possible 1D topological superconductor
reported recently in InSb nanowires [20], a strong impurity
potential would split the 1D topological superconductor
into two. Therefore, at the impurity site we anticipate two
universal bound states, with precise zero energy. The
observation of such a pair of zero-energy Majorana fermi-
ons is an unambiguous identification of the topological
nature of InSb nanowires.
Conclusion.—We have investigated the nonmagnetic

and magnetic impurity scattering in an atomic topological
superfluid and have predicted the existence of a universal
bound state for strong impurity scatterings. The observa-
tion of such a universal bound state—via spatially resolved
radio-frequency spectroscopy—is a smoking-gun proof of
atomic topological superfluidity. Our prediction seems
within experimental reach and opens the way to unambig-
uously characterizing the topological properties of other
solid-state systems, such as the unconventional super-
conductor Sr2RuO4 and the 1D topological superconductor
in InSb nanowires.

FIG. 3 (color online). The wave function of the universal
bound state, induced by either a nonmagnetic or magnetic
impurity in the strong scattering limit. The inset shows the linear
contour of LDOS for spin-up and spin-down atoms near the
impurity site.

FIG. 4. Loss of the universal bound state for an extended
impurity. Here, we take a Gaussian-shape scattering potential,
V�
impðrÞ ¼ ½V�

imp=ð�d2Þ� exp½�r2=d2�, with width kFd ¼ 0:5.

From bottom to top, the impurity strength increases from
Vimp ¼ 0 to 0:06r2FEF, in steps of 0:002r2FEF. Other parameters

are the same as in Fig. 1.
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Note added.—After completing this work, we became
aware of a related nonself-consistent T-matrix calculation
in 1D topological superconductors, which predicted a
bound state induced by nonmagnetic impurities [41].
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