98 research outputs found

    On the tensor product of a Boolean algebra and an orthoalgebra

    Get PDF

    A quantum logical and geometrical approach to the study of improper mixtures

    Get PDF
    We study improper mixtures from a quantum logical and geometrical point of view. Taking into account the fact that improper mixtures do not admit an ignorance interpretation and must be considered as states in their own right, we do not follow the standard approach which considers improper mixtures as measures over the algebra of projections. Instead of it, we use the convex set of states in order to construct a new lattice whose atoms are all physical states: pure states and improper mixtures. This is done in order to overcome one of the problems which appear in the standard quantum logical formalism, namely, that for a subsystem of a larger system in an entangled state, the conjunction of all actual properties of the subsystem does not yield its actual state. In fact, its state is an improper mixture and cannot be represented in the von Neumann lattice as a minimal property which determines all other properties as is the case for pure states or classical systems. The new lattice also contains all propositions of the von Neumann lattice. We argue that this extension expresses in an algebraic form the fact that -alike the classical case- quantum interactions produce non trivial correlations between the systems. Finally, we study the maps which can be defined between the extended lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic

    Hilbert Lattice Equations

    Full text link
    There are five known classes of lattice equations that hold in every infinite dimensional Hilbert space underlying quantum systems: generalised orthoarguesian, Mayet's E_A, Godowski, Mayet-Godowski, and Mayet's E equations. We obtain a result which opens a possibility that the first two classes coincide. We devise new algorithms to generate Mayet-Godowski equations that allow us to prove that the fourth class properly includes the third. An open problem related to the last class is answered. Finally, we show some new results on the Godowski lattices characterising the third class of equations.Comment: 24 pages, 3 figure

    Type-Decomposition of a Pseudo-Effect Algebra

    Full text link
    The theory of direct decomposition of a centrally orthocomplete effect algebra into direct summands of various types utilizes the notion of a type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly) noncommutative version of an effect algebra. In this article we develop the basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set to PEAs, and show that TD sets induce decompositions of centrally orthocomplete PEAs into direct summands.Comment: 18 page

    Probability Measures and projections on Quantum Logics

    Full text link
    The present paper is devoted to modelling of a probability measure of logical connectives on a quantum logic (QL), via a GG-map, which is a special map on it. We follow the work in which the probability of logical conjunction, disjunction and symmetric difference and their negations for non-compatible propositions are studied. We study such a G G -map on quantum logics, which is a probability measure of a projection and show, that unlike classical (Boolean) logic, probability measure of projections on a quantum logic are not necessarilly pure projections. We compare properties of a GG-map on QLs with properties of a probability measure related to logical connectives on a Boolean algebra

    Sharp and fuzzy observables on effect algebras

    Full text link
    Observables on effect algebras and their fuzzy versions obtained by means of confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with the (E)-property, given an observable and a confidence measure, there exists a fuzzy version of the observable. Ordering of observables according to their fuzzy properties is introduced, and some minimality conditions with respect to this ordering are found. Applications of some results of classical theory of experiments are considered.Comment: 23 page

    Partial Description of Quantum States

    Full text link
    One of the most central and controversial element of quantum mechanics is the use of non zero vectors of a Hilbert space (or, more generally, of one dimension subspaces) for representing the state of a quantum system. In particular, the question whether such a representation is complete has been debated since almost the early days of quantum mechanics. In this article, we develop an alternate way to formalize knowledge about the state of quantum systems, based solely on experimentally accessible elements, namely on outcomes of finite measurements. We introduce what we call partial description which, given a feasible measurement, indicates some outcomes which are known to be impossible (i.e. known to have a probability equal to 0 to occur) and hence have to be discarded. Then, we introduce partial states (which are partial descriptions providing as much information as possible) and compare this way to describe quantum states to the orthodox one, using vector rays. Finally, we show that partial states allow to describe quantum states in a strictly more expressive way that the orthodox description does

    Kochen-Specker Vectors

    Full text link
    We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a Hilbert space of any dimension as well as of all the remaining vectors of the space. KS vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space, H^n, n>3 to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in R^n, on algorithms that single out those diagrams on which algebraic 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors were generated and described, all 3-dim vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found.Comment: 19 pages, 6 figures, title changed, introduction thoroughly rewritten, n-dim rotation of KS vectors defined, original Kochen-Specker 192 (117) vector system translated into MMP diagram notation with a new graphical representation, results on Tkadlec's dual diagrams added, several other new results added, journal version: to be published in J. Phys. A, 38 (2005). Web page: http://m3k.grad.hr/pavici
    corecore