98 research outputs found
A quantum logical and geometrical approach to the study of improper mixtures
We study improper mixtures from a quantum logical and geometrical point of
view. Taking into account the fact that improper mixtures do not admit an
ignorance interpretation and must be considered as states in their own right,
we do not follow the standard approach which considers improper mixtures as
measures over the algebra of projections. Instead of it, we use the convex set
of states in order to construct a new lattice whose atoms are all physical
states: pure states and improper mixtures. This is done in order to overcome
one of the problems which appear in the standard quantum logical formalism,
namely, that for a subsystem of a larger system in an entangled state, the
conjunction of all actual properties of the subsystem does not yield its actual
state. In fact, its state is an improper mixture and cannot be represented in
the von Neumann lattice as a minimal property which determines all other
properties as is the case for pure states or classical systems. The new lattice
also contains all propositions of the von Neumann lattice. We argue that this
extension expresses in an algebraic form the fact that -alike the classical
case- quantum interactions produce non trivial correlations between the
systems. Finally, we study the maps which can be defined between the extended
lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic
Hilbert Lattice Equations
There are five known classes of lattice equations that hold in every infinite
dimensional Hilbert space underlying quantum systems: generalised
orthoarguesian, Mayet's E_A, Godowski, Mayet-Godowski, and Mayet's E equations.
We obtain a result which opens a possibility that the first two classes
coincide. We devise new algorithms to generate Mayet-Godowski equations that
allow us to prove that the fourth class properly includes the third. An open
problem related to the last class is answered. Finally, we show some new
results on the Godowski lattices characterising the third class of equations.Comment: 24 pages, 3 figure
Type-Decomposition of a Pseudo-Effect Algebra
The theory of direct decomposition of a centrally orthocomplete effect
algebra into direct summands of various types utilizes the notion of a
type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly)
noncommutative version of an effect algebra. In this article we develop the
basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set
to PEAs, and show that TD sets induce decompositions of centrally orthocomplete
PEAs into direct summands.Comment: 18 page
Probability Measures and projections on Quantum Logics
The present paper is devoted to modelling of a probability measure of logical
connectives on a quantum logic (QL), via a -map, which is a special map on
it. We follow the work in which the probability of logical conjunction,
disjunction and symmetric difference and their negations for non-compatible
propositions are studied.
We study such a -map on quantum logics, which is a probability measure
of a projection and show, that unlike classical (Boolean) logic, probability
measure of projections on a quantum logic are not necessarilly pure
projections.
We compare properties of a -map on QLs with properties of a probability
measure related to logical connectives on a Boolean algebra
Sharp and fuzzy observables on effect algebras
Observables on effect algebras and their fuzzy versions obtained by means of
confidence measures (Markov kernels) are studied. It is shown that, on effect
algebras with the (E)-property, given an observable and a confidence measure,
there exists a fuzzy version of the observable. Ordering of observables
according to their fuzzy properties is introduced, and some minimality
conditions with respect to this ordering are found. Applications of some
results of classical theory of experiments are considered.Comment: 23 page
Partial Description of Quantum States
One of the most central and controversial element of quantum mechanics is the
use of non zero vectors of a Hilbert space (or, more generally, of one
dimension subspaces) for representing the state of a quantum system. In
particular, the question whether such a representation is complete has been
debated since almost the early days of quantum mechanics. In this article, we
develop an alternate way to formalize knowledge about the state of quantum
systems, based solely on experimentally accessible elements, namely on outcomes
of finite measurements. We introduce what we call partial description which,
given a feasible measurement, indicates some outcomes which are known to be
impossible (i.e. known to have a probability equal to 0 to occur) and hence
have to be discarded. Then, we introduce partial states (which are partial
descriptions providing as much information as possible) and compare this way to
describe quantum states to the orthodox one, using vector rays. Finally, we
show that partial states allow to describe quantum states in a strictly more
expressive way that the orthodox description does
Kochen-Specker Vectors
We give a constructive and exhaustive definition of Kochen-Specker (KS)
vectors in a Hilbert space of any dimension as well as of all the remaining
vectors of the space. KS vectors are elements of any set of orthonormal states,
i.e., vectors in n-dim Hilbert space, H^n, n>3 to which it is impossible to
assign 1s and 0s in such a way that no two mutually orthogonal vectors from the
set are both assigned 1 and that not all mutually orthogonal vectors are
assigned 0. Our constructive definition of such KS vectors is based on
algorithms that generate MMP diagrams corresponding to blocks of orthogonal
vectors in R^n, on algorithms that single out those diagrams on which algebraic
0-1 states cannot be defined, and on algorithms that solve nonlinear equations
describing the orthogonalities of the vectors by means of statistically
polynomially complex interval analysis and self-teaching programs. The
algorithms are limited neither by the number of dimensions nor by the number of
vectors. To demonstrate the power of the algorithms, all 4-dim KS vector
systems containing up to 24 vectors were generated and described, all 3-dim
vector systems containing up to 30 vectors were scanned, and several general
properties of KS vectors were found.Comment: 19 pages, 6 figures, title changed, introduction thoroughly
rewritten, n-dim rotation of KS vectors defined, original Kochen-Specker 192
(117) vector system translated into MMP diagram notation with a new graphical
representation, results on Tkadlec's dual diagrams added, several other new
results added, journal version: to be published in J. Phys. A, 38 (2005). Web
page: http://m3k.grad.hr/pavici
- …