8 research outputs found

    Information entropy and nucleon correlations in nuclei

    Full text link
    The information entropies in coordinate and momentum spaces and their sum (SrS_r, SkS_k, SS) are evaluated for many nuclei using "experimental" densities or/and momentum distributions. The results are compared with the harmonic oscillator model and with the short-range correlated distributions. It is found that SrS_r depends strongly on lnA\ln A and does not depend very much on the model. The behaviour of SkS_k is opposite. The various cases we consider can be classified according to either the quantity of the experimental data we use or by the values of SS, i.e., the increase of the quality of the density and of the momentum distributions leads to an increase of the values of SS. In all cases, apart from the linear relation S=a+blnAS=a+b\ln A, the linear relation S=aV+bVlnVS=a_V+b_V \ln V also holds. V is the mean volume of the nucleus. If SS is considered as an ensemble entropy, a relation between AA or VV and the ensemble volume can be found. Finally, comparing different electron scattering experiments for the same nucleus, it is found that the larger the momentum transfer ranges, the larger the information entropy is. It is concluded that SS could be used to compare different experiments for the same nucleus and to choose the most reliable one.Comment: 14 pages, 4 figures, 2 table

    Augmentation of nucleon-nucleus scattering by information entropy

    Full text link
    Quantum information entropy is calculated from the nucleon nucleus forward scattering amplitudes. Using a representative set of nuclei, from 4^4He to 208^{208}Pb, and energies, Tlab<1T_{lab} < 1\,[GeV], we establish a linear dependence of quantum information entropy as functions of logarithm nuclear mass AA and logarithm projectile energy TlabT_{lab}.Comment: 5 pages, 2 figure

    Nuclear symmetry energy effects on neutron stars properties

    Get PDF
    We construct a class of nuclear equations of state based on a schematic potential model, that originates from the work of Prakash et. al. \cite{Prakash-88}, which reproduce the results of most microscopic calculations. The equations of state are used as input for solving the Tolman-Oppenheimer-Volkov equations for corresponding neutron stars. The potential part contribution of the symmetry energy to the total energy is parameterized in a generalized form both for low and high values of the baryon density. Special attention is devoted to the construction of the symmetry energy in order to reproduce the results of most microscopic calculations of dense nuclear matter. The obtained nuclear equations of state are applied for the systematic study of the global properties of a neutron star (masses, radii and composition). The calculated masses and radii of the neutron stars are plotted as a function of the potential part parameters of the symmetry energy. A linear relation between these parameters, the radius and the maximum mass of the neutron star is obtained. In addition, a linear relation between the radius and the derivative of the symmetry energy near the saturation density is found. We also address on the problem of the existence of correlation between the pressure near the saturation density and the radius.Comment: 17 pages, 25 figure

    Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic

    Get PDF
    BACKGROUND: Debated aspects in speciation research concern the amount of gene flow between incipient species under secondary contact and the modes by which post-zygotic isolation accumulates. Secondary contact zones of allopatric lineages, involving varying levels of divergence, provide natural settings for comparative studies, for which the Aegean (Eastern Mediterranean) geography offers unique scenarios. In Palearctic green toads (Bufo viridis subgroup or Bufotes), Plio-Pleistocene (~ 2.6 Mya) diverged species show a sharp transition without contemporary gene flow, while younger lineages, diverged in the Lower-Pleistocene (~ 1.9 Mya), admix over tens of kilometers. Here, we conducted a fine-scale multilocus phylogeographic analysis of continental and insular green toads from the Aegean, where a third pair of taxa, involving Mid-Pleistocene diverged (~ 1.5 Mya) mitochondrial lineages, earlier tentatively named viridis and variabilis, (co-)occurs. RESULTS: We discovered a new lineage, endemic to Naxos (Central Cyclades), while coastal islands and Crete feature weak genetic differentiation from the continent. In continental Greece, both lineages, viridis and variabilis, form a hybrid swarm, involving massive mitochondrial and nuclear admixture over hundreds of kilometers, without obvious selection against hybrids. CONCLUSIONS: The genetic signatures of insular Aegean toads appear governed by bathymetry and Quaternary sea level changes, resulting in long-term isolation (Central Cyclades: Naxos) and recent land-bridges (coastal islands). Conversely, Crete has been isolated since the end of the Messinian salinity crisis (5.3 My) and Cretan populations thus likely result from human-mediated colonization, at least since Antiquity, from Peloponnese and Anatolia. Comparisons of green toad hybrid zones support the idea that post-zygotic hybrid incompatibilities accumulate gradually over the genome. In this radiation, only one million years of divergence separate a scenario of complete reproductive isolation, from a secondary contact resulting in near panmixia

    Type VII secretion systems: structure, functions and transport models

    No full text
    corecore