93 research outputs found

    Data Discovery Paradigms: User Requirements and Recommendations for Data Repositories

    Get PDF
    As data repositories make more data openly available it becomes challenging for researchers to find what they need either from a repository or through web search engines. This study attempts to investigate data users’ requirements and the role that data repositories can play in supporting data discoverability by meeting those requirements. We collected 79 data discovery use cases (or data search scenarios), from which we derived nine functional requirements for data repositories through qualitative analysis. We then applied usability heuristic evaluation and expert review methods to identify best practices that data repositories can implement to meet each functional requirement. We propose the following ten recommendations for data repository operators to consider for improving data discoverability and user’s data search experience: 1. Provide a range of query interfaces to accommodate various data search behaviours. 2. Provide multiple access points to find data. 3. Make it easier for researchers to judge relevance, accessibility and reusability of a data collection from a search summary. 4. Make individual metadata records readable and analysable. 5. Enable sharing and downloading of bibliographic references. 6. Expose data usage statistics. 7. Strive for consistency with other repositories. 8. Identify and aggregate metadata records that describe the same data object. 9. Make metadata records easily indexed and searchable by major web search engines. 10. Follow API search standards and community adopted vocabularies for interoperability

    IgIDivA : immunoglobulin intraclonal diversification analysis

    Get PDF
    Intraclonal diversification (ID) within the immunoglobulin (IG) genes expressed by B cell clones arises due to ongoing somatic hypermutation (SHM) in a context of continuous interactions with antigen(s). Defining the nature and order of appearance of SHMs in the IG genes can assist in improved understanding of the ID process, shedding light into the ontogeny and evolution of B cell clones in health and disease. Such endeavor is empowered thanks to the introduction of high-throughput sequencing in the study of IG gene repertoires. However, few existing tools allow the identification, quantification and characterization of SHMs related to ID, all of which have limitations in their analysis, highlighting the need for developing a purpose-built tool for the comprehensive analysis of the ID process. In this work, we present the immunoglobulin intraclonal diversification analysis (IgIDivA) tool, a novel methodology for the in-depth qualitative and quantitative analysis of the ID process from high-throughput sequencing data. IgIDivA identifies and characterizes SHMs that occur within the variable domain of the rearranged IG genes and studies in detail the connections between identified SHMs, establishing mutational pathways. Moreover, it combines established and new graph-based metrics for the objective determination of ID level, combined with statistical analysis for the comparison of ID level features for different groups of samples. Of importance, IgIDivA also provides detailed visualizations of ID through the generation of purpose-built graph networks. Beyond the method design, IgIDivA has been also implemented as an R Shiny web application. IgIDivA is freely available at https://bio.tools/igidiv

    DOME: recommendations for supervised machine learning validation in biology

    Get PDF
    Supervised machine learning is widely used in biology and deserves more scrutiny. We present a set of community-wide recommendations (DOME) aiming to help establish standards of supervised machine learning validation in biology. Formulated as questions, the DOME recommendations improve the assessment and reproducibility of papers when included as supplementary material.The work of the Machine Learning Focus Group was funded by ELIXIR, the research infrastructure for life-science data. IW was funded by the A*STAR Career Development Award (project no. C210112057) from the Agency for Science, Technology and Research (A*STAR), Singapore. D.F. was supported by Estonian Research Council grants (PRG1095, PSG59 and ERA-NET TRANSCAN-2 (BioEndoCar)); Project No 2014-2020.4.01.16-0271, ELIXIR and the European Regional Development Fund through EXCITE Center of Excellence. S.C.E.T. has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant agreements No. 778247 and No. 823886, and Italian Ministry of University and Research PRIN 2017 grant 2017483NH8.Peer Reviewed"Article signat per 8 autors més 28 autors/es de l' ELIXIR Machine Learning Focus Group: Emidio Capriotti, Rita Casadio, Salvador Capella-Gutierrez, Davide Cirillo, Alessio Del Conte, Alexandros C. Dimopoulos, Victoria Dominguez Del Angel, Joaquin Dopazo, Piero Fariselli, José Maria Fernández, Florian Huber, Anna Kreshuk, Tom Lenaerts, Pier Luigi Martelli, Arcadi Navarro, Pilib Ó Broin, Janet Piñero, Damiano Piovesan, Martin Reczko, Francesco Ronzano, Venkata Satagopam, Castrense Savojardo, Vojtech Spiwok, Marco Antonio Tangaro, Giacomo Tartari, David Salgado, Alfonso Valencia & Federico Zambelli"Postprint (author's final draft

    Introducing the FAIR Principles for research software

    Get PDF
    Research software is a fundamental and vital part of research, yet significant challenges to discoverability, productivity, quality, reproducibility, and sustainability exist. Improving the practice of scholarship is a common goal of the open science, open source, and FAIR (Findable, Accessible, Interoperable and Reusable) communities and research software is now being understood as a type of digital object to which FAIR should be applied. This emergence reflects a maturation of the research community to better understand the crucial role of FAIR research software in maximising research value. The FAIR for Research Software (FAIR4RS) Working Group has adapted the FAIR Guiding Principles to create the FAIR Principles for Research Software (FAIR4RS Principles). The contents and context of the FAIR4RS Principles are summarised here to provide the basis for discussion of their adoption. Examples of implementation by organisations are provided to share information on how to maximise the value of research outputs, and to encourage others to amplify the importance and impact of this work

    High risk HPV-positive women cervicovaginal microbial profiles in a Greek cohort: a retrospective analysis of the GRECOSELF study

    Get PDF
    Increasing evidence supports a role for the vaginal microbiome (VM) in the severity of HPV infection and its potential link to cervical intraepithelial neoplasia. However, a lot remains unclear regarding the precise role of certain bacteria in the context of HPV positivity and persistence of infection. Here, using next generation sequencing (NGS), we comprehensively profiled the VM in a series of 877 women who tested positive for at least one high risk HPV (hrHPV) type with the COBAS® 4,800 assay, after self-collection of a cervico-vaginal sample. Starting from gDNA, we PCR amplified the V3–V4 region of the bacterial 16S rRNA gene and applied a paired-end NGS protocol (Illumina). We report significant differences in the abundance of certain bacteria compared among different HPV-types, more particularly concerning species assigned to Lacticaseibacillus, Megasphaera and Sneathia genera. Especially for Lacticaseibacillus, we observed significant depletion in the case of HPV16, HPV18 versus hrHPVother. Overall, our results suggest that the presence or absence of specific cervicovaginal microbial genera may be linked to the observed severity in hrHPV infection, particularly in the case of HPV16, 18 types

    RAPP System Architecture

    Get PDF
    International audience— Robots are fast becoming a part of everyday life. This rise can be evidenced both through the public news and announcements, as well as in recent literature in the robotics scientific communities. This expanding development requires new paradigms in producing the necessary software to allow for the users' particular needs. In this paper we present a novel architectural design of the RAPP framework that attempts to address this issue, developed within the context of the EU funded project RAPP "Robotic Applications for Delivering Smart User Empowering Application". The proposed framework has been designed aiming towards a cloud-based approach to integrating robotic devices and their respective applications. This goal was defined going beyond the up-coming trends in infrastructures, and focusing on alternative approaches to conventional robotic controllers, while at the same time expanding the capabilities of the RAPP framework in a seamless and scaling manner

    RAPP: A Robotic-Oriented Ecosystem for Delivering Smart User Empowering Applications for Older People

    Get PDF
    International audienceIt is a general truth that increase of age is associated with a level of mental and physical decline but unfortunately the former are often accompanied by social exclusion leading to marginalization and eventually further acceleration of the aging process. A new approach in alleviating the social exclusion of older people involves the use of assistive robots. As robots rapidly invade everyday life, the need of new software paradigms in order to address the user's unique needs becomes critical. In this paper we present a novel architectural design, the RAPP [a software platform to deliver smart, user empowering robotic applications (RApps)] framework that attempts to address this issue. The proposed framework has been designed in a cloud-based approach, integrating robotic devices and their respective applications. We aim to facilitate seamless development of RApps compatible with a wide range of supported robots and available to the public through a unified online store
    • …
    corecore