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Abstract

Intraclonal diversification (ID) within the immunoglobulin (IG) genes expressed by B cell clones arises due to ongoing somatic
hypermutation (SHM) in a context of continuous interactions with antigen(s). Defining the nature and order of appearance of SHMs in
the IG genes can assist in improved understanding of the ID process, shedding light into the ontogeny and evolution of B cell clones
in health and disease. Such endeavor is empowered thanks to the introduction of high-throughput sequencing in the study of IG
gene repertoires. However, few existing tools allow the identification, quantification and characterization of SHMs related to ID, all of
which have limitations in their analysis, highlighting the need for developing a purpose-built tool for the comprehensive analysis of
the ID process. In this work, we present the immunoglobulin intraclonal diversification analysis (IgIDivA) tool, a novel methodology
for the in-depth qualitative and quantitative analysis of the ID process from high-throughput sequencing data. IgIDivA identifies and
characterizes SHMs that occur within the variable domain of the rearranged IG genes and studies in detail the connections between
identified SHMs, establishing mutational pathways. Moreover, it combines established and new graph-based metrics for the objective
determination of ID level, combined with statistical analysis for the comparison of ID level features for different groups of samples.
Of importance, IgIDivA also provides detailed visualizations of ID through the generation of purpose-built graph networks. Beyond the
method design, IgIDivA has been also implemented as an R Shiny web application. IgIDivA is freely available at https://bio.tools/igidiva
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Introduction
Recognizing antigens is B cells’ ‘raison d’être’. This is accom-
plished through the immunoglobulin (IG), which forms the part of
the B cell receptor (BcR) that mediates antigen recognition [1, 2].
Considering the enormous antigen diversity in nature, it is obvious
that a correspondingly vast repertoire of antigen-specific B cells

with diverse BcR IG is warranted to endow the host with immune
competence. The extraordinary diversity of the human BcR IG
repertoire relies largely on V(D)J recombination, a combinatorial
association of distinct IG heavy and light chain variable (V),
diversity (D; for heavy chains only) and joining (J) genes occurring
in developing B cells. Moreover, the variable regions of the IG
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heavy and light chains, representing the antigen binding sites,
comprise four framework regions (FR) and three hypervariable
complementarity determining regions [3]. Successful completion
of V(D)J recombination leads to the expression of functional BcR
IG of both IgM and IgD isotypes on the surface of naive B cells,
rendering them competent to effectively recognize antigens [2, 4].
Once this happens, B cells mature further in specific microenvi-
ronments within the secondary lymphoid organs, called germinal
centers, through two distinct molecular processes: somatic hyper-
mutation (SHM) and class-switch recombination (CSR) [1, 5, 6].
Both processes are catalyzed by the enzyme activation-induced
deaminase (AID) [7, 8]. SHM mostly entails the introduction of
point mutations in the IG variable domain. These mutations can
alter the affinity of the antibody for its cognate antigen, with
mutations that lead to an increase in affinity being promoted [9].
The introduction of mutations within rearranged genes occurs at
rates of 10−5–10−3 mutations per base pair per generation, 106-
fold higher than spontaneous mutations occurring elsewhere in
the genome [10, 11]. On the other hand, CSR is responsible for
the replacement of the IG heavy chain constant gene from IGH-
M/IGHD to IGHG or IGHE or IGHA, switching antibody production
from IgM/IgD to a different class, such as IgG, IgE or IgA, without
altering the antigen specificity of the antibody [12].

The aforementioned BcR IG diversity of the immune system
in a healthy individual is reflected in the polyclonality of the
respective repertoire. Human diseases implicating B cells may
vary in terms of BcR IG gene repertoire diversity: some are poly-
clonal (for instance, systemic lupus erythematosus is associated
with intense polyclonal B cell activation) [13], whereas others
are characterized by oligoclonal (e.g. rheumatoid arthritis and
multiple sclerosis) [14, 15] or even monoclonal B cell expansions
(B lymphoid malignancies) [16].

An additional level of complexity may arise when focusing on
specific, relevant B cell clonal expansions. In such a context, BcR
IG repertoire diversity may increase through a process known as
intraclonal diversification (ID), which entails the introduction of
ongoing SHMs due to continuous antigenic pressure [6, 17, 18].
Studies of the ID process have provided valuable insight into the
ontogeny and evolution of B cell clones in health and disease
[19–23]. However, most relevant studies were performed using
low-throughput, Sanger sequencing; hence, they were inherently
limited with regard to analytical depth and breadth [22–28]. This
limitation was recently surpassed due to the advent of next-
generation sequencing (NGS), allowing a deeper and, thus, more
accurate capture of the diversity of the BcR IG gene repertoire,
both at the clonal and the subclonal levels, the latter being directly
associated with ID [29–31]. However, in order to fully under-
stand the complex immunogenetic ‘mechanics’ of ID, purpose-
built bioinformatic tools are required.

Currently, several different bioinformatic approaches exist for
the analysis and visualization of SHM within the BcR IG gene
rearrangement sequences and their classification in the context
of ID, such as ClonalTREE [32], GCTree [33], GLaMST [34], IgTree
[35], MTree [36], ViCloD [37], Alakazam [38, 39] and AncesTree [40].
While ClonalTREE was developed for a different purpose (bacterial
composition evolution), the rest are dedicated to the study of
BcR IG repertoires. That notwithstanding, most existing solutions
display one or more of the following limitations: (i) the analytical
process in all of them is based on the inference of mutational
variants, relying on statistical analysis for network generation,
which can lead to arbitrary results and overcomplicated graphs;
(ii) BcR IG sequence classification is based on phylogenetic tree-
constructing programs, which is not ideal, given the high level of

identity between the different sequences, often differing in only
a few mutations, and given that traditional phylogenetic analysis
are not suitable for these cases [41, 42]; (iii) they do not provide any
analysis of graph metrics that could greatly assist in the quantifi-
cation of ID levels and, subsequently, in performing comparisons
between samples or groups of samples; (iv) some of them are not
publicly available; (v) they are restricted to the analysis of the
IG heavy chain gene repertoire; (vi) they do not provide a user-
friendly interface that would enable their application without
prior programming knowledge and (vii) they are visualization-
only tools.

Here, we present the immunoglobulin intraclonal diversi-
fication analysis (IgIDivA) tool, a purpose-built tool for the
detailed assessment of the ID process through the analysis
of high-throughput NGS data. IgIDivA provides a detailed
characterization of all mutations occurring in the context of
the ID process as well as their connections. Subsequently,
connections are used for ‘building’ mutational pathways, while
a series of graph metrics are calculated toward a multifaceted
characterization of ID. Finally, statistical analysis is provided
for comparisons of different features of ID among samples or
groups of samples. Overall, IgIDivA is a user-friendly pipeline,
also available as an R Shiny app, freely available at https://bio.
tools/igidiva.

Materials and methods
Data pre-processing
The main pre-processing workflow, depicted in Figure 1, consists
of (i) quality filtering and synthesis of raw reads (in the case
of paired-end sequencing) in order to obtain high-quality, full-
length BcR IG sequences; (ii) data annotation with IMGT/HighV-
QUEST [43] and (iii) meta-data analysis with tripr (T cell receptor/
immunoglobulin profiler in R) for the grouping of sequences into
clonotypes and their alignment [44]. IgIDivA requires as input two
tripr output files per sample. First, the ‘clonotypes computation’
file, i.e. grouping of BcR IG gene rearrangement sequences into
clonotypes. Second, the ‘grouped alignment’ file, which concerns
the alignment of all BcR IG gene rearrangement sequences against
the respective germline V genes at the nucleotide (nt) level. Each
unique sequence or group of identical sequences is considered as
a nucleotide variant (nt var). The combination of these two files
allows for the subsequent selection of specific clonotypes.

Processing of the input
The IgIDivA approach is based on the assumption that, during the
process of ID, SHMs are acquired sequentially due to continuous
interactions with antigen(s). Hence, identifying the ‘timeline’ of
SHM is a critical aspect of the process.

The first step in our approach concerns clonotype selection:
depending on the context, the simplest option would be to focus
on the most expanded (i.e. the most frequent) clonotype. However,
any number of clonotypes can be selected per sample and each
clonotype will be processed independently.

Subsequently, the ‘grouped alignment’ file should be filtered in
order to limit the analysis to the selected clonotype(s).

Network generation
Network generation comprises the identification of all different
nt vars, their SHM patterns and their connections.

First, the main nt var (i.e. the largest group of identical BcR IG nt
sequences within a clonotype) of a given clonotype is identified.
This represents the central point of the network since it comprises
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Figure 1. Workflow of the pre-processing of the data before the use of IgIDivA. The main steps are represented—from the obtention of the NGS raw data
to the obtention of the two files (clonotypes computation and grouped alignment) that are used as input for IgIDivA. The original input is represented
as an oval. The processes are represented as rectangles and the files are represented as parallelograms. The output files of the processes are the input
files of the following ones.

the largest fraction of sequences and, in turn, B cells of the respec-
tive clone. By default, SHMs of the main nt var are calculated from
the beginning of FR1 to the end of FR3. However, this analysis can
be performed from a more downstream position within the BcR
IG, and suggestions are given when selecting the parameters.

Second, nt vars that have the same SHMs as the main nt var as
well as additional SHMs are selected. Whenever the main nt var
does not carry any SHM (i.e. 100% germline identity), all other nt
vars will be assigned to that category. Samples that do not contain
nt vars with additional SHMs or if they contain only nt vars with a
single additional SHM (one level of extra SHMs) will not be further
analyzed.

Third, nt vars are connected according to their SHMs. This
process takes place only if the connection is consistent with
progressive acquisition of SHMs. The tool also allows for the
inclusion of ‘jumps’ (i.e. connection of nt vars with common SHMs
differing by two or more SHMs). Additionally, a filter regarding the
minimum size of analyzed nt vars can be applied (default option
is 10 sequences). In complex cases where a given nt var could
be connected either to a nt var with only one SHM difference or
one with jumps (difference of two or more SHMs), only the first
connection would be shown for simplification purposes.

The last part of this process concerns the selection of nt vars
with common yet fewer SHMs than the main nt var. These nt
vars are considered as having emerged prior to the main nt var.
Then, they are ordered according to their number of SHMs. At
this step, all nt vars with fewer SHMs compared to the main nt
var while also passing the threshold of the minimum number of
sequences are considered. The reason for this additional criterion
is that these nt vars are extremely rare, given that they represent
early steps of the ongoing SHM process.

Mutational pathways selection
After the generation of the graph network, only the nt vars with
SHMs considered as critical parts of the ID process within a
given BcR IG clonotype are selected. In more detail, as previously

mentioned, all nt vars with fewer SHMs than the main nt var are
selected. In regard to nt vars with additional SHMs, only the nt
vars belonging to the following pathways are selected for further
analysis (Figure 2):

(i) Most relevant pathway. Also named as the main block of
SHMs, it is defined as the group of nt vars leading to a specific
end of pathway nt var (end node) and including the highest
number of BcR IG sequences within a given clonotype.

(ii) Longest pathway(s). They contain the highest number of
nodes.

(iii) Longest mutational pathway(s). They include connected
nodes with the highest cumulative number of mutations.
It is identical to the ‘longest pathway’ if ‘jumps’ are not
allowed.

Graph metrics calculations
High levels of complexity in the ID reflect a strong selective
antigenic pressure, leading to concrete, specific and non-random
mutational patterns. To obtain an overview of such process, we
introduced a series of graph network metrics. They can be used
to quantify different features related to the complexity of the ID
process, such as the level of convergence or the length of the
mutational pathways (Table 1). In brief, a sample with a high level
of complexity in the ID process would be characterized by high
‘average degree’, ‘average distance’, ‘relative reads convergence’
score, ‘maximal path length’ and ‘maximal mutational length’
as well as by a low ‘end nodes density’ score. The metrics ‘aver-
age degree’ and ‘average distance’ are established Graph Theory
metrics [45]. The rest (‘relative reads convergence’, ‘end nodes
density’, ‘maximal path length’ and ‘maximal mutational length’)
have been specifically designed for ID analysis.

In the case of the relative reads convergence, a low value
would be close to 0, with the possibility of having cases with values
>1 (if the nt vars with additional mutations accumulate more BcR
IG sequences than the main nt var). For the end nodes density,
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Figure 2. ID network and pathway selection. Representation of the complete networks and its components. The nodes represent nt variants (nt vars)
and the edges represent the connections among them. The letters below the nt vars represent the mutations at the nt level that each nt var has. Note
that the nt mutations are shown in this figure for the purpose of this example; they do not appear in the actual graphs, only the mutations at the aa
level are shown, if any. The germline is represented in this figure for explanation purposes, but it does not appear in the actual graphs. The main nt
is indicated at the center of the networks in a dark circle with three mutations (A–C). Toward it, nt vars lacking some of those mutations appear (the
darker the circle, the less mutations they have and the closer to the germline they are). From the main nt var, nt vars having the same mutations (A–C)
and additional ones are shown in circles orange and green (the colors are intercalated in order to distinguish better the different level of mutations; the
darker the color, the higher is the number of additional mutations). The size of the nodes is proportional to the number of reads that constitutes the nt
var. Panels A and B represent complete networks, the first allowing jumps (from +2 mutations to +4) and the second, without jumps allowed. As it can
be seen in panel A, if jumps are allowed and a nt var (A + B + C + D + E + F) can be connected to the previous one (A + B + C + D + E) but also to another
one with jumps (A + B + C + F), it will only be connected to the one with less difference in terms of number of mutations to simplify the graph. Panels
C–F represent the pathways that are taken into account for the network construction. C represents the ‘less mutations pathway’ (the pathway that
connects the nt vars between the main nt var and the germline). D represents the most relevant pathway (the one that gathers the maximal number
of reads). E represents the longest pathway (length = 3). F represents the longest mutational pathway (+4 mutations). For simplicity, the three types of
pathways displayed only contain one pathway each. It is, however, possible for each type to have more than one pathway (i.e. many pathways with the
same maximal pathway length or with the same maximal mutational pathway length).

the closer to 0, the lower the randomness of the ID process. For
the rest of the proposed metrics, there cannot be a single defined
range of values that can be readily considered as ‘low’ or ‘high’.
In principle, the further a value is away from 0, the greater the
level of the complexity is for the respective metric. Ultimately, the
comparison between samples across multiple metrics can allow
for better estimation of the ID complexity evaluation.

Identification of replacement SHMs
For each node, SHMs at the nt level are classified into silent and
replacement SHMs, which lead to amino acid (aa) substitutions.
This process is performed for the main nt var as well as for all nt
vars with additional SHMs.

Graph network visualization
For graph network visualization, the main nt var is selected and
depicted as the central point. Nodes that represent nt vars with
fewer SHMs are depicted with directionality toward the main nt
var according to the connectivity pattern; in specific, the greater
its SHM difference, the further away it is depicted. For the nt vars
with additional SHMs, only nodes and edges that fall into the pre-
viously mentioned pathways are selected and represented with
directionality from the main nt var. Depending on the selected
parameters, the network representation may also contain: (i) aa
substitutions (this does not include the SHMs of the main nt var
in order to better visualize the acquisition of new replacement
SHMs); (ii) the relative size of each individual nt var can be
proportional to its number of sequences using a log10 scale and
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Table 1. Description of the graph metrics used for the characterization and comparison of ID

Metric Calculation Meaning High value = Question that is answered by the
metric

RELATIVE READS
CONVERGENCE

Number of sequences of
the most relevant pathways

Number of sequences of
the main nt var

Tendency for the BcR IG
sequences to accumulate in
the main nt var or to acquire
additional convergent SHMs

High convergence Will the clone evolve toward the
accumulation of more SHMs or will it
remain in its current state?

END NODES
DENSITY

Number of end nodes

Number of nt vars with
additional

SHMs

Randomness or specificity of
the mutational path

High randomness Is the acquisition of SHMs specific or
random?

MAXIMAL PATH
LENGTH

Number of levels of additional
SHMs

Complexity of the
mutational path

High complexity Is this an ongoing SHM process
happening in many steps?

MAXIMAL
MUTATIONAL
LENGTH

Maximum level of additional
SHMs

Complexity of the mutational
pathway, allowing
non-consecutive SHMs

High complexity Are there many different SHMs
happening progressively?

AVERAGE DEGREE Average total number of
connections of each nt var

Complexity and connectivity
of the mutational pathways

High connectivity Are the mutations strongly
interconnected?

AVERAGE DISTANCE Average number of steps along
the shortest pathways between
each pair of nt vars

Complexity of the
mutational path

High complexity Is the ID process
complex?

(iii) SHMs jumps (if allowed, nodes with non-consecutive SHMs
will be shown).

The main nt var is always depicted in dark petrol blue, whereas
the nt var with fewer SHMs are represented using different shades
of lighter blue (the darker the shade, the greater the distances
from the main nt var). For the nt vars with additional SHMs,
different shades of orange and green are intercalated, allowing
for a rapid distinction of mutational levels and the identification
of non-consecutive SHMs (nt vars with ‘jumps’). Jumps can be
visually identified whenever two connected nodes have the same
color and/or there is a gap in intensity between their respective
shades of colors (the darker the code, the greater the distance
from the main nt var).

Group comparisons
Information regarding different groups and their respective sam-
ples should be provided by the user. Then, all groups are compared
for each individual metric. First, a Kruskal-Wallis test is applied
in order to determine whether the comparisons are overall sta-
tistically significant [46]. Subsequently, pairwise comparisons are
performed for all samples and the statistical significance of each
comparison is calculated with the Wilcoxon test [47]. The user can
select whether the p-values will be adjusted or not. For a given
metric, the corresponding values of each group are represented
with side-by-side boxplots. The x-axis corresponds to the groups,
while the y-axis corresponds to the metrics values. Furthermore,
the plot contains the mean/median value as a red dot/horizontal
line within the boxplot of each group. Whenever a pairwise com-
parison between two groups is statistically significant, the plot
will also contain a bar connecting these two groups as well as the
corresponding p-value directly above.

The dataset
The dataset used for the validation of IgIDivA was extracted from
a previous NGS study focusing on the ID analysis in chronic
lymphocytic leukemia (CLL) samples from stereotyped subsets #2
and #169 [31, 48]. The dataset is publicly available in the repository
European Nucleotide Archive (ENA) with the accession number
PRJEB36589.

In more specific, the dataset consisted of 72 analyzed PCR
amplicons from 44 patients with CLL: 32 cases belonged to stereo-
typed subset #2 (32 IGHV-IGHD-IGHJ, 21 IGLV-IGLJ gene rearrange-
ments), 7 cases belonged to stereotyped subset #169 (7 IGHV-
IGHD-IGHJ, 6 IGLV-IGLJ gene rearrangements), while 6 cases were
not stereotyped (6 IGLV-IGLJ gene rearrangements).

Results and discussion
General output
The output of IgIDivA consists of a series of graphs and summary
tables in order to provide a systematic analysis of the level of ID.
In more specific terms, the following types of output are provided
for each given sample:

(i) Summary calculations table. It contains information about
the number of clonotypes that are considered for analysis,
the number of nt vars, the number of total sequences, the
number of singletons, the number of expanded sequences
and the number of sequences of the main nt var.

(ii) Extra mutations calculations. It provides the number of nt
vars with additional SHMs for each given number of SHMs as
well as the total number of sequences. It includes the total
number of nt vars and sequences (i.e. not only the ones that
are plotted and used for the calculation of graph metrics).

(iii) Fewer SHMs calculations. This table shows the number of
sequences lacking SHMs of the main nt var for each different
number of SHMs.

(iv) Evolution. It provides information for all unique SHMs or
combinations of SHMs of all the nt vars that are part of
the connected graph network. It also shows the number
of SHMs in comparison to the germline, the number of
sequences with those SHMs and the mutational level to
which they belong. In more detail, the mutational level is
‘less’ if they have fewer SHMs than the main nt var, ‘main’
for the SHMs of the main nt var and ‘additional’ for the
cases with more SHMs than the main nt var. This information
may assist in the identification of SHMs that are represented
in a given network at the nt level and their connectivity
pattern.
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(v) Block table. This table contains the following information
for each end node: (i) the block score (i.e. the ratio of the
total number of sequences of the nodes forming the block
of pathways that leads to that particular end node to the
total number of sequences of all the nodes of the network
with more SHMs than the main nt var); (ii) convergence score
(i.e. relative reads convergence metric, Table 1); (iii) number
of sequences of the block of pathways; (iv) number of nodes
of the block of pathways; (v) id of nodes forming the block of
pathways; (vi) pathways length and (vii) maximal mutational
length of the block. From this table the group of nodes with
the highest block score is selected as the ‘main block’ or the
‘most relevant pathways’.

(vi) Graph network. It contains all features described in the ‘Net-
work generation’ subsection of the Materials and Methods
section.

(vii) Graph info. It summarizes the values of the graph metric.
It contains the germline identity %, the values of the graph
metrics (Table 1) as well as information related to those
metrics.

(viii) Replacement mutations. It consists of two different tables
with the information of the replacement SHMs in the main
nt var and the rest of the nt vars, respectively. Information
for all SHMs at the aa level and the number of sequences
carrying each mutation is provided. These changes might
have implications at the functional level.

When analyzing more than one sample, additional output is
produced:

(i) Discarded samples table. It provides the names of samples
that have been discarded from the analysis (e.g. samples
with no connections among nt vars).

(ii) aa mutation tables. It contains all identified replacement
SHMs, including those present in more than one sample.

(iii) Metrics table. It includes the graph metrics information for
all samples. If a sample has been discarded, the cause is
provided.

(iv) Comparisons. If samples are classified into groups, the tool
performs pairwise comparisons for all groups. This is per-
formed independently for each of the graph metrics.

Application: ID assessment in CLL stereotyped
subsets #2 and #169
To assess the capacity of IgIDivA to provide a systematic and
multifaceted analysis of ID, we processed the data from the study
by Gemenetzi et al. [31, 48], concerning the analysis of samples
from patients with CLL belonging to stereotyped subsets #2 and
#169.

In CLL, ‘stereotyped subsets’ are defined as groups of patients
presenting common immunogenetic features as well as common
clinical presentation and outcome [49–52]. Previous studies have
shown that stereotyped subset #2, the largest in CLL, displays
pronounced ID within the IG heavy and (lambda) light chain
genes [31, 53]. Stereotyped subset #169 is considered a satellite
to subset #2, i.e. it is closely related at the immunogenetic level
[54]. Gemenetzi et al. explored this relationship through the study
of ID within the BcR IG utilizing NGS [31]. The authors reported
a median of 3662 nt variants for the dominant heavy chain gene
clonotype of subset #2 cases and 1803 variants/dominant clono-
type for subset #169 cases (p-value = 0.479). Regarding the light
chain clonotypes, a median of 7015 variants/dominant clonotype
was reported for subset #2 cases, while the respective value for

subset #169 was 5101 variants (p-value = 1.000). The non-subset
cases displayed lower ID levels for the dominant clonotype (p-
value < 0.05) compared to subset #2, but no statistically signif-
icant differences were found against subset #169. Despite these
findings, the analysis was not able to capture the full extent of
the ID process. Thus, we decided to analyze the ID process in these
two stereotyped subsets in CLL in a more systematic way.

We followed the same pre-processing of data as outlined in
the original study by Gemenetzi et al. [31] and then proceeded to
the dedicated ID analysis with IgIDivA. Because of differences in
the experimental approach for the PCR amplification and NGS
of the heavy and light chain sequences, the starting point of
the alignment had to be different for the samples with IGHV-
IGHD-IGHJ gene rearrangements and the ones with IGLV-IGLJ
gene rearrangements (column start = 5 and 23, respectively). Thus,
samples were divided in two different batches and analyzed with
IgIDivA (Table 2).

Some of the samples were discarded from the analysis, as
described in Table 3.

Finally, comparisons were undertaken between the different
groups for all metrics (running time = 6.5 s). In total, all the analy-
sis was performed in 7 min 26 s, with an average of 6.05 s/sample.
The analysis was performed using a standard mid-range laptop,
with two processor cores (Intel Core i3) and 4 GB RAM.

Evidence of ID was found in all three groups (Figure 3). Overall,
subset #2 cases displayed a higher level of complexity in the
ID process, followed by #169 cases and non-subset cases. In
most cases, the most prominent differences concerned the
IGLV-IGLJ data. For example, in terms of convergence score,
the IGL sequences of subset #2 had mean/median values of
0.079/0.0105, followed by IGH sequences of subset #2 cases
(mean/median 0.038/0.01), IGH subset #169 sequences (mean/-
median 0.011/0.003), non-subset IGL sequences (mean/median
0.003/0.003) and, finally, subset #169 IGL sequences (mean/me-
dian 0.002/0.002). Nevertheless, differences between the groups
were small and only a few pairwise comparisons displayed
statistically significant differences (Figure 4):

(i) Convergence score: Subset #2 IGH sequences versus non-
subset IGL sequences (mean/median 0.038/0.010 and
0.003/0.003, respectively; p-value = 0.045); subset #2 IGH
sequences versus subset #169 IGL sequences (mean/median
0.038/0.01 and 0.002/0.002, respectively; p-value = 0.012).

(ii) Maximal mutational length: Subset #2 IGH sequences versus
subset #169 IGL sequences (mean/median 6.35/4 and 2.2/2,
respectively; p-value = 0.021).

(iii) Average degree: Subset #2 IGL sequences versus subset #169
IGL sequences (mean/median 2.881/2.850 and 2.268/2.250,
respectively; p-value = 0.003); subset #2 IGL sequences
versus subset #2 IGH sequences (mean/median 2.881/2.850
and 2.45/2.31, respectively; p-value = 0.008); subset #2 IGL
sequences versus non-subset IGL sequences (mean/median
2.881/2.850 and 2.502/2.500, respectively; p-value = 0.038).

(iv) Average distance: Subset #2 IGH sequences versus subset
#169 IGH sequences (mean/median 1.94/2 and 1.286/1,
respectively; p-value = 0.047).

All p-values were calculated using the Wilcoxon test [47] in
order to evaluate the statistical significance of changes in the
metrics’ distribution medians between the provided groups. The
other metrics and pairwise comparisons did not show any sta-
tistically significant differences. This highlights the overall high
level of similarity between the analyzed groups and, perhaps
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Table 2. Number of samples and running time of the two different batches of samples analyzed with IgIDivA

IG gene rearrangements Number of samples Running time Running time/sample

IGHV-IGHD-IGHJ 39 3 min 20 s 5.13 s
IGLV-IGLJ 33 3 min 49 s 6.9 s

Table 3. Number of samples discarded from the analysis and number of samples remaining for the analysis

Subset Rearrangements Discarded (maximal
mutational length = 1)

Discarded (no connected
nodes with extra SHMs)

Remaining for
the analysis

#2 IGHV-IGHD-IGHJ 12 3 17
#2 IGLV-IGLJ 5 0 16
#169 IGHV-IGHD-IGHJ 0 0 7
#169 IGLV-IGLJ 1 0 5
Non-subset IGLV-IGLJ 1 0 5

Figure 3. Different levels of complexity and convergence in the ID process can be depicted with the IgIDivA graph networks. Panels A–C are subset
#2 CLL samples (A and B are samples with IGHV-IGHD-IGHJ gene rearrangements, while C is a sample with IGLV-IGLJ rearrangement), D and E are
subset #169 samples (IGHV-IGHD-IGHJ and IGLV-IGLJ gene rearrangements, respectively) and F is a non-subset sample (IGLV-IGLJ gene rearrangement).
All networks have different levels of complexity and convergence of the ID (e.g. A has the longest pathways, B has only three nodes with additional
mutations, C has many (121) end nodes, while D has only one end node and E and F have three and two end nodes, respectively). The figure shows the
need for graph metrics to measure and quantify these characteristics and the differences or similarities among groups. For a better understanding, the
values of the metrics convergence score and end nodes density of each sample has been added next to their respective identifier. The sample with the
highest convergence score (C, CS = 1.017, indicating a higher accumulation of the BcR IG sequences in the nt vars with additional mutations compared
to the main nt var), is also the sample with the highest END (indicating a higher level of end nodes and, thus, a higher level of randomness). This is an
example of how it is necessary to have several metrics in order to correctly characterize one sample. A has the second highest convergence score, with
a low END, showing a high level of convergence and complexity of the mutational pathways in the ID process.
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Figure 4. Some of the pairwise comparisons between the sample groups displayed statistically significant results. Each set of boxplots represents
a different graph metric (A, convergence score; B, maximal mutational length; C, average degree; D, average distance). Pairwise comparisons were
performed for each metric among the groups (non-subset IGLV, subset #169 IGHV, subset #169 IGLV; subset #2 IGHV and subset #2 IGLV). The values
are shown as boxplots, with each boxplot being a group, the y-axis representing the value of the metric, the horizontal line in the middle of the boxplot
representing the median and the dot inside the boxplot representing the mean. If a pairwise comparison is statistically significant, the p-value is shown.
For each metric, the p-value of the overall Kruskal Wallis comparison is shown as well. ‘Light’ = light chain, IGLV-IGLJ rearrangement; heavy = heavy
chain, IGHV-IGHD-IGHJ rearrangement.

most importantly, the ability of IgIDivA to identify even small
differences in terms of ID that otherwise could remain unseen.

IgIDivA versus other bioinformatic tools
As previously mentioned, IgIDivA was designed in order to over-
come limitations of previous bioinformatic tools [32–40]. First,
IgIDivA does not perform any kind of inference for missing nt var
connections and non-consecutive related mutations are allowed
due to their potential relevance. This is particularly important
considering that inferred nt variants could lead to an artificially
higher level of complexity, especially in cases with extensive ID.
Also, IgIDivA selects certain pathways to display in the graph
(see Mutational pathways selection) leading to the generation of
‘cleaner’ graphs containing only relevant information. Moreover,
IgIDivA is flexible since a variable number of clonotypes can be
analyzed, depending on the user needs. Also, IgIDivA is publicly
available and easy-to-use without requiring a certain level of
programming skills from the user.

For the comparison of IgIDivA with an already existing bioin-
formatic tool, we chose Alakazam since it is a complete solu-
tion for the study of the adaptive immune receptor (IG and T

cell receptor) gene repertoire and is publicly available. Alakazam
has functionalities related to aa substitutions and graph metrics
calculation and has been already used for the assessment of
ID [30]. In terms of functionality, the tool offers the capacity
to study clonal lineages, diversity analysis, gene usage and lin-
eage reconstruction [38]. This comparison between Alakazam and
IgIDivA may provide some insights regarding the corresponding
strengths and challenges. To this end, we selected one sample
from the previously analyzed dataset (H33) and proceeded to a
similar type of analysis with both tools. Given the fact that the
individual functionalities of both tools are quite different, a direct,
quantitative comparison was not feasible; yet, some qualitative
differences could be identified.

First, the input was modified in order to enable processing
it with Alakazam. The sample was analyzed with IMGT/HighV-
QUEST and the output was extracted in AIRR format. Second,
a script with a combination of some of the functionalities of
Alakazam had to be written due to the fact that this tool is not
specialized for ID analysis and it has a wider range of uses: (i)
makeChangeoClone and (ii) buildPhylipLineage. Then, a lineage
tree was obtained, which was compared to the network obtained
with IgIDivA (Figure 5).
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Figure 5. Graphs obtained with Alakazam and IgIDivA. Sample H33 analyzed with (A) Alakazam and (B) IgIDivA. IgIDivA provides a more detailed
characterization of the nt vars that are part of the ID process, including information of their size, their SHM content and the mutations at the aa level.
Alakazam displays inferred nt vars (uncoloured circles) and depicts all the nt vars in the sample (coloured circles). IgIDivA does not infer intermediate
nt vars but allows the presence of ‘jumps’ (two nt vars can be connected while having more than one SHM of difference) and the nt vars that are
represented are the ones that are part of the ‘less mutational pathway’, the ‘most relevant pathway’, the ‘longest pathway’ and the ‘longest mutational
pathway’ (i.e. the pathways that contribute the most to the ID process). Consequently, the results are more focused on the ID analysis and provide more
meaningful results in that regard.

Some of the differences found between the two methods were
the following:

(i) Processing time: Alakazam took approximately 3 min to
provide the output, while IgIDivA’s output was produced in
10 s.

(ii) Presence of inferred nt vars: Alakazam includes in its lineage
tree inferred nt vars together with all the nt vars present in
the data. In contrast, IgIDivA focuses only on real nt vars
included in pathways directly related to the ID process.

(iii) aa mutations: Alakazam offers the possibility to study the
aa content of sequences and its properties. However, it is
not possible to integrate this information into the network.
IgIDivA plots the aa substitutions in the networks and pro-
vides tables with all the aa mutations present in all the
samples.

(iv) Graph metrics: Alakazam provides the option of calculating
some metrics, however, most of them are calculated
individually for each nt var. For example, the function
‘getPathLengths’ calculates the distance from the germline
for each nt var; the ‘summarizeSubtrees’ function gives as
result a table with some properties of each node (such as the
size, the pathway length or the outdegree). While Alakazam
provides comparisons between samples of the distributions
of normalized subtree statistics for a population of trees
with the ‘plotSubtrees’ option, it is not possible to get
the metrics results per sample (instead of per node) or to
make comparisons between groups of samples. IgIDivA’s

metrics are specific to the ID analysis, and comparisons
between groups of samples can be performed.

(v) Purpose-built end-to-end tool: Unlike Alakazam, IgIDivA has
been designed specifically for the analysis of ID; thus, it
offers a complete workflow that requires a minimal effort
from the user’s side.

(vi) User-friendly tool: IgIDivA is also an easy-to-use Shiny app
without any need for programming knowledge. Moreover, the
scripts are available and can be modified if necessary.

Overall, Alakazam offers many useful functionalities for a
complete repertoire analysis. However, IgIDivA is more specific in
the context of the ID process and provides a complete view in that
regard.

Conclusions
The study of ID in different contexts, extending from infections
and vaccination to autoimmunity, allergy and B cell malignancy,
can assist in gaining insight into the implicated processes, with
diagnostic, prognostic and therapeutic relevance. Hence, dedi-
cated tools can meaningfully assist in thorough immunogenetic
analysis; against that, however, already available tools are not
always specific for this purpose, have some drawbacks or do not
provide the necessary detailed characterization. For these rea-
sons, we developed IgIDivA, a purpose-built and publicly available
tool for the complete and detailed analysis of the ID process in
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high-throughput sequencing data. IgIDivA offers several function-
alities: (i) retrieval of different types of immunogenetic informa-
tion, (ii) identification of SHMs and establishment of mutational
pathways, (iii) visualization of graph networks representing SHM
connections involved in the ID process, (iv) calculation of new
graph-based metrics that were developed for the evaluation of ID
levels and (v) application of statistical analysis for the assessment
of comparisons between groups of samples. Moreover, IgIDivA
provides summary tables throughout the analysis that the user
can use for downstream study, while, at the same time, it is fast,
open-source and easy-to-use for both experienced and inexperi-
enced users. To our knowledge, IgIDivA is the first tool developed
specifically for the detailed study and characterization of the ID
process, offering relevant information, visual representations and
useful metrics for quantification together with statistical analysis
for the comparison among samples. It can be applied for the study
of ID in many different contexts and samples.

Future steps regarding the development of IgIDivA include
compatibility to the AIRR format as well as support of addi-
tional visualizations of the output. Moreover, the flexibility of
IgIDivA offers the possibility of further future extensions, includ-
ing more graph metrics, additional parameters or continuous
customization.

Key Points

• The availability of bioinformatic tools tailored for the
analysis of ID is limited.

• We present IgIDivA, a purpose-built tool that provides
a detailed characterization and visualization of the ID
process, allowing for comparisons between samples or
groups of samples accompanied by advanced statistical
analysis.

• IgIDivA can provide relevant information about the ID
process in infections, vaccination’s reactions, autoim-
munity, allergy and B cell malignancies, among others,
possibly having implications in their diagnosis, prognosis
and treatment.

• IgIDivA is fast, publicly available and user-friendly and
available also as a Shiny app web application.

Data availability
The data underlying this article are available in the repository ENA
with the accession number PRJEB36589, at https://www.ebi.ac.uk/
ena/browser/view/PRJEB36589.
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