15 research outputs found

    Complex maps without invariant densities

    Get PDF
    We consider complex polynomials f(z)=zℓ+c1f(z) = z^\ell+c_1 for ℓ∈2N\ell \in 2\N and c1∈Rc_1 \in \R, and find some combinatorial types and values of ℓ\ell such that there is no invariant probability measure equivalent to conformal measure on the Julia set. This holds for particular Fibonacci-like and Feigenbaum combinatorial types when ℓ\ell sufficiently large and also for a class of `long-branched' maps of any critical order.Comment: Typos corrected, minor changes, principally to Section

    Thermodynamic formalism for contracting Lorenz flows

    Full text link
    We study the expansion properties of the contracting Lorenz flow introduced by Rovella via thermodynamic formalism. Specifically, we prove the existence of an equilibrium state for the natural potential ϕ^t(x,y,z):=−tlog⁥J(x,y,z)cu\hat\phi_t(x,y, z):=-t\log J_{(x, y, z)}^{cu} for the contracting Lorenz flow and for tt in an interval containing [0,1][0,1]. We also analyse the Lyapunov spectrum of the flow in terms of the pressure

    The Hausdorff and dynamical dimensions of self-affine sponges : a dimension gap result

    Get PDF
    We construct a self-affine sponge in R 3 whose dynamical dimension, i.e. the supremum of the Hausdorff dimensions of its invariant measures, is strictly less than its Hausdorff dimension. This resolves a long-standing open problem in the dimension theory of dynamical systems, namely whether every expanding repeller has an ergodic invariant measure of full Hausdorff dimension. More generally we compute the Hausdorff and dynamical dimensions of a large class of self-affine sponges, a problem that previous techniques could only solve in two dimensions. The Hausdorff and dynamical dimensions depend continuously on the iterated function system defining the sponge, implying that sponges with a dimension gap represent a nonempty open subset of the parameter space

    On the Hausdorff dimension of some fractal sets

    No full text

    Escape Rates for Conformal GDMSs and IFSs

    No full text
    corecore