
Monatsh Math (2014) 174:141–162
DOI 10.1007/s00605-014-0605-7

Stochastics and thermodynamics for equilibrium
measures of holomorphic endomorphisms on complex
projective spaces

Michał Szostakiewicz · Mariusz Urbański ·
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Abstract It was proved by Urbański and Zdunik (Fund Math 220:23–69, 2013) that
for every holomorphic endomorphism f : P

k → P
k of a complex projective space

P
k, k ≥ 1, there exists a positive number κ f > 0 such that if J is the Julia set

of f (i.e. the support of the maximal entropy measure) and φ : J → R is a Hölder
continuous function with sup(φ)−inf(φ) < κ f (pressure gap), then φ admits a unique
equilibrium state μφ on J . In this paper we prove that the dynamical system ( f, μφ)
enjoys exponential decay of correlations of Hölder continuous observables as well as
the Central Limit Theorem and the Law of Iterated Logarithm for the class of these
variables that, in addition, satisfy a natural co-boundary condition. We also show that
the topological pressure function t �→ P(tφ) is real-analytic throughout the open set
of all parameters t for which the potentials tφ have pressure gaps.
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1 Introduction

Fix an integer k ≥ 1. Let f : P
k → P

k be a holomorphic endomorphism of degree
d ≥ 2 of the complex projective space P

k . Denote by J = J ( f ) the Julia set of the
map f : P

k → P
k , i.e. the topological support of the measure of maximal entropy.

The map f : P
k → P

k is called regular if its exceptional set E = E( f ) does
not intersect the Julia set J = J ( f ). Recall that the exceptional set E = E( f )
is a proper algebraic, totally invariant subset contained in the critical set, such that,
given a ∈ P

k , the sequence of the measures d−kn( f n)∗δa equally distributed on the
preimages of the point a converges to the measure of maximal entropy if and only
if a /∈ E . For k = 1 the set E( f ) is either empty, or of cardinality 2 (z �→ z±d ),
or of cardinality 1 (polynomials). Obviously, for k = 1 the set E( f ) never intersects
J ( f ), so in dimension 1, every map is regular. In dimension k > 1, we put this as an
additional assumption, although we do not know any example of a holomorphic map
f : P

k → P
k for which the intersection E( f )∩ J ( f ) would be nonempty. Moreover,

it is known that the set E( f ) is empty for a generic holomorphic map f : P
k → P

k

(see [3, Lemma 1.5.6]).
Let φ : J ( f ) → R be a continuous function, in the sequel frequently referred to

as a potential. By P(φ) we denote the (classical) topological pressure of the potential
φ with respect to the dynamical system f : J ( f ) → J ( f ). Its definition and a
systematic account of properties can be found for example in [11]. If μ is a Borel
probability f -invariant measure on J ( f ), we denote by hμ( f ) its Kolmogorov–Sinai
metric entropy. The relation between pressure and entropy is given by the following
celebrated Variational Principle.

P(ϕ) = sup

{
hμ( f )+

∫
ϕ dμ

}
, (1.1)

where the supremum is taken over all Borel probability f -invariant measures μ, or
equivalently, over all Borel probability f -invariant ergodic measuresμ. The measures
μ for which

hμ( f )+
∫
φ dμ = P(φ)

are called equilibrium states for the potential φ. The main theorem proved in [15] is
this.

123



Stochastics and thermodynamics for equilibrium measures 143

Theorem 1.1 Let f be a regular holomorphic endomorphism of a complex projective
space P

k, k ≥ 1, of algebraic degree d. Then there exists a positive number κ f ,
where log d ≥ κ f > 0, such that if φ : J ( f ) → R is a Hölder continuous function
with sup(φ)− inf(φ) < κ f (we then say that φ has a pressure gap), then φ admits a
unique (hence ergodic) equilibrium stateμφ on J . This equilibrium state is equivalent
to a fixed point of the normalized dual Perron–Frobenius operator. In addition the
dynamical system ( f, μφ) is K-mixing. In the case when the Julia set J does not
intersect any periodic irreducible algebraic variety contained in the critical set of f ,
we have that κ f = log d.

Remark 1.2 We would like to remark that in [2] the key assumption (pressure gap)
was that

sup(φ) < P(φ), (1.2)

and this assumption was then repeated in [12]. It corresponds to the assumption

(k − 1) log d + sup(φ) < P(φ) (1.3)

in the multidimensional (k is the dimension) case; it reduces to (1.2) if k = 1. In
the present paper the weakest assumption is that sup(φ) − inf(φ) < log d, which is
somewhat stronger than (1.3). In fact we inherited it from [15], where it permitted
us to estimate almost painlessly from below the eigenvalues of the Perron–Frobenius
operator. With the assumption (1.3) it would be an additional hard technical issue to,
the already technically heavy paper [15].

The main object of study in our paper will be the dynamical system ( f, μφ). We
shall show in Theorem 7.6 that this system enjoys exponential decay of correlations
of Hölder continuous observables as well as the Central Limit Theorem and the Law
of Iterated Logarithm for the class of these variables that, in addition, satisfy a natural
co-boundary condition. We also show in Theorem 6.1 that the topological pressure
function t �→ P(tφ) is real-analytic throughout the open set of all parameters t for
which the potentials tφ have pressure gaps.

This paper is self-contained in the sense that all notions used are introduced and all
the steps leading to the main theorems are explained. Many proofs, however, are close
to those for the 1-dimensional case dealt with in [12], and pointing out the particular
fragment of [12] we refer the reader to this paper for some proofs.

Another class of invariant measures was considered by Dupont in [5]. These are
images (under certain natural coding) of Gibbs measures for some Hölder continuous
potentials, on an appropriate symbolic space. Stochastic properties were proved for
these measures in [5] (see also [4]). However, the approach used in that paper cannot be
applied for our class of the most natural invariant measures. In our case, the potential
is a regular (Hölder continuous) function defined directly in the dynamical space P

k .
But its composition with the coding map is (usually) highly irregular.

2 Good holomorphic inverse branches

Assumptions. Throughout the paper, we keep the following two assumptions:
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144 M. Szostakiewicz et al.

(1) f : P
k → P

k is a regular holomorphic map.
(2) φ : J ( f ) → J ( f ) is a Hölder continuous potential satisfying supφ− inf φ < κ f .

Under these assumptions, the main theorem from [15] holds (see Theorem 1.1
above). First, we recall that in [15] the equilibrium measure was constructed as a
fixed point of the corresponding Perron–Frobenius operator. More precisely, assuming
(which is always possible) that P(φ) = 0, we finally obtain the invariant density ρφ
as a unique fixed point of the operator Lφ : C(J ( f )) → C(J ( f )):

Lφ(ρ)(x) =
∑

y∈ f −1(x)

expφ(y)ρ(y),

where the inverse images of critical values of f are counted with multiplicities. As
usually, we shall denote by Snφ the sum

Snφ(y) = φ(y)+ · · · + φ( f n−1(y)).

The unique conformal measure mφ is obtained as a fixed point of the dual operator
L∗
φ . The measure μφ is then equal to

dμφ = ρφ dmφ.

Note that exp(−φ) is the Jacobian of the measure mφ while

exp(−φ̃) = ρφ ◦ f

ρφ
exp(−φ) (2.1)

is the Jacobian of the measure μφ , where

φ̃ = log ρφ − log ρφ ◦ f + φ.

Note also that for the normalized Perron–Frobenius operator Lφ̃ , defined analo-

gously to Lφ , with φ replaced by φ̃, we have

Lφ̃(1) = 1.

From now on, we assume that P(φ) = 0.
Given an open connected subset W of P

k and given an integer n ≥ 1, we denote
by In(W ) the collection of all connected components of f −n(W ). If V ∈ In(W ) and
f |nV : V → W is a bijection (equivalently an injection), we set

f −n
V := ( f |nV )−1 : W → V .

We denote the collection of all such components by PGn(W ) and refer to them
as pre-good components. Of course, if V ∈ PGn(W ), then the map f −n

V : W → V
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Stochastics and thermodynamics for equilibrium measures 145

is a holomorphic homeomorphism from W to V . We call it the holomorphic inverse
branch of f n from W to V .

It follows from our assumptions that there exists δ > 0 such that

inf(φ) ≥ sup(φ)− (1 − δ) log d.

Using the above notation, we have

1 =
∫

Lφ1dmφ =
∫ ∑

w∈ f −1(z)

expφ(w)dmφ ≥ dk exp(inf φ)

= exp(k log d + inf(φ))

≥ exp((k − 1 + δ) log d + supφ)).

Using this, we get

exp(φ(z)) ≤ exp(−(k − 1 + δ) log d) = d−(k−1+δ).

Thus,
exp(Snφ(z)) ≤ d−n(k−1+δ)

and
exp(Snφ̃(z)) ≤ Md−n(k−1+δ) (2.2)

where M = sup(ρφ)/ inf(ρφ). The proof of the following proposition is now imme-
diate.

Proposition 2.1 If V ∈ PGn(W ), i.e. if V is a pre-good component of f −nW , then

μφ(V ) ≤ Md−(k−1+δ)μφ(W ).

Given l ∈ N, denote by PCl the postcritical set of the map f l , i.e.

PCl = f l(Crit( f l)).

Our main technical tool in this section is the following.

Lemma 2.2 Fix δ as above and some 0 < δ′ < δ. Let θ = d− δ′
2 < 1. Then there

exists η > 0 such that, for every ε > 0 there exist l ∈ N and C < ∞ such that if B
is an arbitrary open ball centered at a point from the Julia set J , and if B is disjoint
from the set PCl then, with B ′′ = ηB, for every integer n ≥ l there exists a subset of
components of Gn(B ′′) ⊂ PGn(B ′′) with the following properties.

(a) If V ∈ Gn+1(B ′′), then f (V ) ∈ Gn(B ′′).
(b) If V ∈ Gn(B ′′), then diam(V ) ≤ Cθn.
(c) μφ

(⋃
Gn(B ′′)

) ≥ (1 − ε)μφ(B), where
⋃

Gn(B ′′):= ⋃{V : V ∈ Gn(B ′′)}
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(d) There exists β > 0 such that

μφ

(⋃
Bn(B

′′)
)

≤ exp(−βn),

where Bn(B ′′) consists of all connected components of the sets f −1(V ), V ∈
Gn−1(B ′′) that do not belong to Gn(B ′′) and

⋃
Bn(B ′′):= ⋃{V : V ∈ Bn(B ′′)}.

(e) supz Bn(z) ≤ exp(−βn), where Bn(z) = ∑
w∈ f −n(z)∩⋃

Bn(B′′) exp Snφ̃(w).

Proof It can be deduced from the proof of the similar result for the measure of maximal
entropy, see [6, p.1599]. The difference is that, here, we have to estimate not only the
number of “bad” components Bn , which is sufficient for the case of maximal measure,
but also the value of the measure μφ of their union. The estimate (d) can be easily
deduced from [6], using Proposition 2.1 above (the estimate of the measure of a pre-
good component), as we will sketch briefly below. Of course (d) follows from (e), and
(c) follows from (d) for l large enough.

We put some details below.
In the first step—exactly in the same way as Guedj—we show that, the family

f −1(PGn(ρn−1 B) \ PGn(ρn B)) (meaning: all components in f −1 PGn(ρn−1 B),
which are not components in PGn(ρn B) and ρn = ∑n

l j−2) consists of at most
Dn4(k−1)d(k−1)n components, where D is a constant depending on the dimension k
and on the degree of the map f , but independent of n. In the light of Proposition 2.1
this gives estimates on the number and measure of components in PGn(ρB) where
ρ = lim ρn = ∑∞

l j−2.
In the second step we define Gn(B ′′), B ′′ = aρB, to be:

Gn(B
′′):= {V ∈ PGn(B

′′) : diam(V ) ≤ Cθn = d−δ′/2}

where a and C are constants which will be specified below.
If we prove that PGn(B ′′) \ Gn(B ′′) consists of at most d(k−1+δ′)n components,

then we will be able to estimate the function Bn(z) by Md−(δ−δ′)n(Dn4(k−1) + 1).
The latter is smaller than exp(−βn) (with β equal, say (δ − δ′)/2) for all n ≥ l if l
has been chosen large enough.

To show that, first—again, in the same way as Guedj—we notice that

∑
V ∈PGn(B′)

∫

Pk−1

Area( f −n
V (�γ )) dν(γ ) ≤ d(k−1)n,

where ν denotes Fubini-Study measure on P
k−1,�γ :=Lγ ∩ρB and Lγ is the complex

line passing through the center of B in the directionγ . Thus, there are at most d(k−1+δ′)n
components V ∈ PGn(ρB), for which the inequality

∫
Area( f −n

V (�γ )) dν(γ ) ≤ d−δ′n (2.3)
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Stochastics and thermodynamics for equilibrium measures 147

does not hold. If on some V = f −n
V (ρB) it does hold, then the diameter of

f −n
V (1/4ρB) is small. To prove it, we shall use the same argument as in [6], which

we include for the convenience of the reader. Consider V ∈ PGn(ρB) on which
(2.3) does hold. Then on a set A ∈ P

k−1 of measure bigger than 1/2 we have
Area( f −n

V �γ ) ≤ 2d−δ′n . Now, an argument using extremal length (see lemma in

Appendix of [1]) we get that diam( f −n
V 1/2�γ ) ≤ 2cd−δ′n/2 for γ ∈ A where c is a

constant depending on the dimension k only. Then, a theorem in [14] (see [3], Theo-
rem 1.4.10 for a convenient formulation) gives us that diam( f −n

V aρB) ≤ 2cd−δ′n/2,
where, again a is a constant depending only on the dimension of the space but inde-
pendent of f and of n. This gives the statement of the Lemma with η = aρ. ��

For η as in the statement of Lemma 2.2, put B ′ = 1
2ηB = 1

2 B ′′. Applying Cauchy’s
formulas for partial derivatives, we directly obtain from Lemma 2.2 the following.

Corollary 2.3 With the hypotheses of Lemma 2.2 we have that there exists a constant
Cη > 0 such that

||D f −n
V (z)|| ≤ Cηθ

n

for all n ≥ 0, all V ∈ Gn(B ′′) and all z ∈ B ′ = 1
2ηB.

Fixing l. We now keep the setting of Lemma 2.2 with ε:=1/2. This gives the value of
iterate l, which we fix at this step of the construction.
Notation. From now on, we frequently write Gn, Bn , instead of Gn(B ′), Bn(B ′). As
in Lemma 2.2, item (e), we denote

Bn(z) =
∑

w∈ f −n(z)∩⋃
Bn(B′)

exp Snφ̃(w).

Since we will need to pass several times to an iterate, we now introduce the follow-
ing.
Notation. G f m

n denotes the family of good components Gmn . Next, B f m

n equals,
roughly speaking f −m(G f m

n−1) \ G f m

n , or, more precisely, B f m

n consists of those com-

ponents of the sets f −m V (where V ∈ G f m

n−1), which are not in G f m

n . Accordingly,
we put

B f m

n (z) =
∑

w∈ f −nm (z)∩⋃
B f m

n (B′)

exp Snm ϕ̃(w).

Lemma 2.4 There exists a constant C = C(β) such that, for all q ≥ l, n ≥ 2, and
all z ∈ B ′, we have that

B f q

n (z) ≤ C exp(−β(n − 1)q).

Proof First, notice that

B f q

n = f −q
(⋃

Gq(n−1)

)∖ ⋃
Gqn =

⋃
(n−1)q<k≤nq

f −(nq−k)
(⋃

Bk

)
.

123



148 M. Szostakiewicz et al.

Thus, remembering that Lφ̃(1) = 1, and, consequently, for every set A, and every
m,Lφ̃ (1 f −m (A)) = 1A!, we get that

B f q

n (z) = Lnq
φ̃
1

B f q
n
(z) =

∑
(n−1)q<k≤nq

Lnq
φ̃
1 f −(nq−k)(Bk )

(z) =
∑

(n−1)q<k≤nq

Lk
φ̃
1Bk (z)

=
∑

(n−1)q<k≤nq

Bk(z) ≤
∑

(n−1)q<k≤nq

exp(−βk)

≤ exp(−β)
1 − exp(−β) exp(−β(n − 1)q).

We are done. ��
Corollary 2.5 Let q ≥ l; put g = f q . There exists a constant Cq such that, for all
n ≥ 1 and all z ∈ B ′,

Bg
n (z):=B f q

n (z) ≤ Cq exp(−βnq).

Proof This directly follows from Lemma 2.4, by putting

Cq := exp(βq)max

{
C(β), sup

z
Bg

1 (z)

}
.

��
In what follows, we shall need to pass to yet another iterate h = gr . The corollary

below gives an explicit bound for Bh
n (z).

Corollary 2.6 Let, as before, g = f q , q ≥ l. Now, let r ≥ 1 and n ≥ 2. Then

Bh
n (z):=B f qr

n (z) ≤ Cq exp

(−nβqr

2

)

where Cq is another constant depending on q, but independent of r and n.

Proof Writing ⋃
Bh

n =
⋃

(n−1)r<k≤nr

g−(nr−k)
(⋃

Bg
k

)

and using the same reasoning as in the proof of Lemma 2.4, we get

Bh
n (z) ≤

∑
(n−1)r<k≤nr

Bg
k (z) ≤

∑
(n−1)r<k≤nr

Cq exp(−βkq)

≤ Cq(1 − exp(−βq))−1 exp(−β(n − 1)qr).

Since n ≥ 2,we have n − 1 ≥ n/2, and the result follows. ��
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We fix here the constant Cq , for which both Corollaries 2.5 and 2.6 hold.
The most significant consequence for a component to belong to Gn is this.

Corollary 2.7 There exists a constant Cl such that, for all n, for every good component
V of the set f −n(B ′), i.e. V ∈ Gn, and for all x, y ∈ V , we have that

exp (Snφ(x))

exp (Snφ(y))
≤ Cl and

exp
(

Snφ̃(x)
)

exp
(

Snφ̃(y)
) ≤ Cl . (2.4)

Proof This follows directly from the expanding property along good branches (see
item (b) in Lemma 2.2) and Hölder continuity of φ. ��

3 Selection of the root ball

First, note that the topological support of the measureμφ is equal to J ( f ). This means
that every open ball intersecting J ( f ) has a positive measure μφ .

The proof of the following lemma is rather standard. A slightly different version
can be found in [12, Lemma 9].

Lemma 3.1 Let a < b be two real numbers. If μ is a Borel finite measure on [a, b],
then for every λ > 1 large enough there exists a point c ∈ (a, b), in fact a measurable
set of positive Lebesgue measure of such points c, such that

μ
(
(c − λ−n, c + λ−n)

) ≤ λ̃−n

for all integers n ≥ 1, where λ = λ̃3.

As a straightforward consequence of the abstract Lemma 3.1, we shall prove the
following.

Lemma 3.2 For every pointw ∈ J \PCl there exists a ball B centered atw such that
2
η

B ∩ PCl = ∅ and

μφ
(
B(∂B, λ−n)

) ≤ λ̃−n .

with λ, λ̃ taken from Lemma 3.1, and η, taken from Lemma 2.2.

Proof Take any R > 0 so small that 2
η

B(w, R) ∩ PCl = ∅ and consider the map

P : B(w, R) → [0, R] given by the formula P(z) = ||z −w||. Applying Lemma 3.1
to the measure μφ ◦ P−1 the assertion of Lemma 3.2 immediately follows. ��

4 Fine inducing scheme

In this section, starting from the ball selected above, we define good and very good pull-
backs defined on B. By pullbacks we mean the holomorphic branches of f −qr (where
r will be precisely determined below). Using these selected “very good” pullbacks we
shall define, in Sect. 5, the induced map (an infinite Iterated Function System).
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We assume that an integer r ≥ 1 is so large that

Cηθ
r ≤ 1/4, (4.1)

where the constant Cη comes from Corollary 2.3. More requirements on r will be
imposed later. Also, q will be fixed later on. Having q and r chosen, we put, as before:

h = f qr : P
k → P

k .

and, to simplify the notation,

φ0:=
qr−1∑
j=0

φ ◦ f j ,

φ̃0:=
qr−1∑
j=0

φ̃ ◦ f j =
qr−1∑
j=0

φ ◦ f j − log ρφ ◦ f qr−1 + log ρφ.

Denote by L0 the normalized Perron–Frobenius operator associated to the map h :
J → J . It is given by the formula

L0(ζ )(x) =
∑

y∈h−1(x)

ζ(y) exp(φ̃0)(y) = 1

ρφ(x)
Lqr
φ

(
ζ · ρφ

)
(x).

Note that L0(1) = 1. Again, this is important in the forthcoming proofs.

Remark 4.1 Actually, since ρφ is a continuous function, L0 acts (as well as Lφ) as a
continuous linear operator in the space C(J ). However, we do not use the continuity
of ρφ . The only fact we need is that ρφ is bounded away from 0 and ∞.

The following, quite general Lemma was proved in [12].

Lemma 4.2 Assume that Q ⊂ P
k is a set for which there exists γ > 0 such that

L0(1Q)(x) > γ (4.2)

for every x ∈ J ( f ). Then there exist α ∈ (0, 1), an integer n0 ≥ 0, and δ > 0, all three
depending on γ only (in particular independent of r ≥ 1), such that for all n ≥ n0 we
have that,

μφ

({
x ∈ J ( f ) : #

{
0 ≤ i ≤ n : hi (x) ∈ Q

}
≤ αn

})
< exp(−δn). (4.3)

Remark 4.3 In order to make this lemma useful for us, we need some preparation.
Note that, given h (recall that h = f rq ) and an open set Q, it is easy to find γ for
which (4.2) is satisfied (the existence of such γ follows directly from the topological
exactness of the map). However, at this point we need to show that, for our particular
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Stochastics and thermodynamics for equilibrium measures 151

choice of Q = Qr (see Lemma 4.4 below), γ can be chosen to be independent of r ,
as r will be modified in the course of the proof.

Fixing q. We choose q at this point; it will not be modified in the rest of the proof. On
the contrary, r has not been fixed yet, and some additional conditions on r will appear
later on. Recall that l has been already chosen in Lemma 2.2, applied for ε = 1

2 .
The ball B, and, consequently B ′ = (η/2)B, has been fixed in Lemma 3.2. Since
f|J ( f ) is topologically exact, there exists N such that f N (B ′) ⊃ J ( f ). Finally, we
put q = max(N , l).

Lemma 4.4 For every integer q ≥ l there exists γ > 0 such that for every integer
r ≥ 1, we have for every z ∈ J ( f ) that,

L0(1Q)(z) ≥ γ,

where
Q:=Qr :=

⋃
{V : V ∈ G(r−1)q(B

′)}.
Proof As a straightforward consequence of Lemma 2.2, particularly its item (c), and
(2.4), we get the following.

Lq(r−1)
φ̃

1Q(z) ≥ (2Cl)
−1 (4.4)

for all z ∈ B. By the choice of q, we have f q(B) ⊃ J ( f ). Thus, for every x ∈ J
there then exists y ∈ B such that f q(y) = x . Applying (4.4) we can then write

L0(1Q)(x) ≥ exp
(

Sq φ̃(y)
)

Lq(r−1)
φ̃

1Q(y)

≥ (2Cl)
−1 exp

(
Sq φ̃(y)

)

≥ (2Cl)
−1 exp

(
inf

(
Sq φ̃

))
.

Setting γ to be the last number of this formula finishes the proof. It is important to
notice here that γ depends on q, but it is independent of r . ��
Definition 4.5 We say that a point z ∈ B ′ has a good pullback of length n ≥ 1 if
hn(z) ∈ B ′ and Vn(z), the connected component of h−n(B ′) containing z, belongs to
Gh

n(B
′). We then frequently refer to this component just as a (good) pullback.

Definition 4.6 We further say that such a good pullback Vn(z) is very good if for
every 0 ≤ j ≤ n − 1, there exists z j ∈ hn− j (Vn(z)) such that

dist(z j , ∂B ′) > λ− j .

Remark 4.7 Note that if r ≥ 1 is chosen so large that,

Cηθ
rq < λ−1 (4.5)
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(see Corollary 2.3 and also (4.1)), and Vn is a very good pullback then the sets hn− j (Vn)

do not intersect ∂B ′; in particular Vn is entirely contained in B ′.

Having fixed q, we find γ , according to the statement of Lemma 4.4, and α, given by
Lemma 4.2, applied for Q = Qr . Again, it is important to note that one can find a
common value γ (and thus also α), valid for all r .

The proof of Lemma 4.8 below is similar to Lemma 17 from [12]. As in Lemma 4.2
let Zn be the set of all points x ∈ B ′ for which

#
{

0 < i ≤ n : hi (x) ∈ B ′ and gir−(r−1)(x) ∈ Q
}
> αn.

It follows from Lemma 4.2 that μφ(Zn) ≥ μ(B ′)− exp(−δn).
Lemma 4.8 Let

Yn := {
x ∈ Zn : #{0 ≤ j ≤ n : the pullback Vj (x) is good} < (α/2)n

}
.

Then
μφ(Yn) ≤ (3Cq)

n exp(−rqnβα/4),

where the constants β,Cq come from Corollary 2.6.
Thus, with r ≥ 1 sufficiently large (depending on q and the constants above) we

have that
μφ(Yn) < exp(−rqnβα/8). (4.6)

Proof As we have mentioned, the proof is in the spirit of the proof of Lemma 17
from [12]. Nevertheless, it requires several modifications, so we outline it below and
refer to [12] for omitted details. Recall that g and h have been chosen so that h = gr

and gr−1(Q) = B ′.
Let x ∈ Yn , and consider a part of the trajectory of x :

x, g(x), . . . , gr (x) = h(x), . . . , g(n−1)r (x) = hn−1(x), g(n−1)r+1(x)

We now describe the ’configuration’ M of integers, defined by the trajectory of x .
First, the set of indexes I = {1, . . . , n} is divided into two disjoint groups:

I1 = { j ∈ I : such that gr j−(r−1)(x) ∈ Q (in particular, h j (x) = gr j (x) =
gr−1(gr j−(r−1)(x)) ∈ B), but the pullback Vj (x) is not good }
I2 = { j ∈ I : such that either gr j−(r−1)(x) ∈ Q and the pullback Vj (x) is good
or gr j−(r−1)(x) /∈ Q }

Note that there are at most n − αn/2 elements in I2, since x visits Q at least αn
times, but there are less than αn/2 good pullbacks. The configuration M = M(x) is
a sequence m1 > m′

1 ≥ m2 > m′
2 ≥ · · · ≥ mk > m′

k defined as follows: First, let

m1 = max{m ∈ I1}
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Since the pullback Vm1(x) is not good, there exists m′
1 < m1 such that hm′

1(x) ∈
Bm1−m′

1
. If m′

1 − m1 = 1, then we can say more: then hm′
1(x) ∈ Bg

r , as g(hm′
1(x)) =

grm1−(r−1)(x) ∈ Q = Gg
r−1.

Next, m2 is chosen as the largest element (≤m′
1), belonging to the group I1. Induc-

tively, we find m′
2,m3,m′

3, etc, until m′
k such that all 1, . . . ,m′

k are in I2.
In this way, the set I = {1, . . . , n} has been divided into ’blocks’ (m′

i ,mi ] and
’gaps’. Since every element in a gap is in I2, the sum of lengths of blocks �mi :=mi −
m′

i ) is at least αn /2.
Consider the set Y M

n of points in Yn , sharing the same configuration M . The set
Y M

n is contained in C := f −m′
1(W�m1)∩ f −m′

2(W�m2)∩ . . . f −m′
k (W�mk ), where Wm

is equal to Bm for m ≥ 2, and W1 = Bg
r . Since μφ(C) = ∫ L0(1C )dμφ , it is enough

to find a bound for L0(1C ). Since L0(1) = 1, it is easy to see that L0(1C ) can be

bounded from above by
∏k

j=1 L�m j
0 1W�m j

The latter is estimated using the following.

Lemma 4.9 For every m ∈ N,L01Wm ≤ Cq exp(−rqm β
2 ).

Proof This follows from Corollary 2.5, applied for n = r and from Corollary 2.6. ��
Now, since the total length of blocks,

∑
�mi , is larger than αn

2 , this gives:

sup L01C ≤ Cn
q exp

(
−rq

(∑
�mi )

β

2

))
≤ Cn

q exp

(
−rqαn

β

4

)
.

Since there are at most 3n possible configurations, this gives:

μφ(Yn) ≤ (3Cq)
n exp(−rqnβα/4).

Thus (4.6) holds if r is large enough.
The proof of the next lemma is almost the same as the proof of Lemma 18 from

[12]. The only modification is that ∂U is to be replaced by ∂B ′.

Lemma 4.10 Let Rn ⊂ B ′ be the set of points in x ∈ Zn that satisfy the following
two requirements.

(1) x ∈ B \ Yn, i.e. the points in Rn have at least α2 n good pullbacks, but
(2) No good pullback Vm(x) with m ≤ n, is very good.

Then
μφ(Rn) ≤ (3C)n λ̃−αn/2,

where the constant C (again: independent of r) comes from Lemma 4.11 below.

We omit the proof of this lemma, referring to [12], but, since the value of the
constant C in the statement of Lemma 4.10 is important, we explain it in Lemma 4.11.

Lemma 4.11 Denote by G Bh
k the subfamily of good components for hk , which are

entirely contained in B(∂B ′, λ−k). Then

sup Lk
01G Bk ≤ C λ̃−k,
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where C = Cl
μφ(B′) .

Proof We have

λ̃−k ≥ μφ(B(∂B ′, λ−k)) =
∫

1B(∂B′,λ−k )dμφ ≥
∫

Lk
01G Bk dμφ

≥ μ(B ′) inf Lk
01G Bk

≥ 1

Cl
sup Lk

01G Bk · μφ(B ′).

��
In order to make the measure μφ(Rn) converge to zero exponentially fast, we thus

require λ to be so large that
λ
α
6 = λ̃

α
2 > 3C (4.7)

(remember that λ = λ̃3). Here, again, C = Cl
μφ(B′) . So, denoting

λ′′ = λ̃
α
2 · 1

3C
> 1

we have μφ(Rn) ≤ (λ′′)−n .
The constants used in the construction. To clarify the situation, we summarize here
the procedure of fixing consecutive constants (and iterates of the map f ) used in the
construction.

(1) The constant l is taken from Lemma 2.2, applied for ε = 1/2.
(2) The ball B (and, consequently, also B ′) is chosen so that B satisfies the assump-

tions of Lemma 2.2, and, moreover, so that the statement of Lemma 3.2 is satisfied,
for every λ large enough.

(3) The constant q depends on B.
(4) The constant α depends on q.
(5) Since in the statement of Lemma 3.2 λ can be always replaced by its power, now,

having fixed q and α, we fix λ so large that (4.7) holds.
(6) Finally, r is fixed. The iterate r depends on q, α and λ.

5 Construction of the induced system

Let

X =
∞⋃

n=1

Zn
∖
(Yn ∪ Rn)

It directly follows from Lemmas 4.2, 4.4, 4.8, 4.10 that

μφ(X) = μφ(B
′). (5.1)
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Given x ∈ X let n(x) be the smallest integer n ≥ 1 such that the pullback Vn(x) is
very good.

We define
F(x) = hn(x)(x).

Keep this x ∈ X and put n = n(x). Note that, if y ∈ Vn(x) then this procedure,
applied to y leads to the same component Vn . Indeed, by the definition of the induced
map, we use the earliest very good pullback. Thus, if F(y) �= hn(y) then F(y) =
hm(y) for some m < n. Let Vm(y) be the corresponding pullback. Then Vm(y) ∩
Vn(x) �= ∅ as y belongs to both of these sets, but Vn(x) � Vm(y) since x ∈ Vn(x) \
Vm(y). Let us consider hm(Vm(y)) = U and hm(Vn(x)). The latter is an element of the
pullback chosen for x , a component of h−(n−m)(B), and, since Vn(x) must intersect
∂Vm(y), also hm(Vn(x)) intersects ∂B ′. But this is impossible by the definition of very
good pullbacks. Let D be the countable family of all sets Vn(x)(x), x ∈ X , defined in
this way. We have just shown that the function n : X → N is constant on each set
D ∈ D, and so it can and will be treated as a function from D → N. In particular, the
map

F :
⋃

D∈D
→ B ′

is well-defined and its inverse branches F−1
D : B ′ → D, D ∈ D, form an infinite

iterated function systems, which, with a slight abuse of notation, will be also referred
to as F . We denote by JF the limit set of the iterated function system F , i.e.

JF =
∞⋂

n=0

F−n(X). (5.2)

The argument leading to (5.1) gives in fact more. Namely:

μφ(JF ) = μφ(B
′). (5.3)

It immediately follows from the construction of the system F and Lemma 4.10, that

mφ

(⋃
{D : n(D) = n}

)
≤ (λ′′)−n (5.4)

for some λ′′ > 1 and all n ≥ 1. Let us record the following, proved in the same way
as Lemma 19 in [12], essential property of this induced system.

Lemma 5.1 If D1, D2 are two domains in D, F|D1 = hn, F|D2 = hm then for 0 ≤
s < n, 0 ≤ t < m either hs(D1) ∩ ht (D2) = ∅ or the closure of one of these sets is
contained in the other set.

For the sake of Proposition 5.4, we need to extend the potential φ beyond the Julia
sets J ( f ).

Lemma 5.2 The function φ can be extended in a Hölder continuous manner, with the
same Hölder exponent, to the whole projective space P

k .
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This lemma is well-known. From now on, we assume that the potential φ is defined
and Hölder continuous in the whole projective space P

k .

As we have passed to induced system, we shall modify the potential φ accordingly to
this inducing process. First, if D ∈ D is one of the domains on which F is defined,
then we put, for all x ∈ D, that

φ̂(x) =
n(D)−1∑

k=0

Sqrφ(h
k(x)).

Then, for all Borel sets A ⊂ De we have that,

mφ(F(A)) = mφ(h
n(D)(A)) =

∫
A

exp

⎛
⎝−

n(D)−1∑
k=0

Sqrφ ◦ hk

⎞
⎠ dmφ

=
∫
A

exp
(
−φ̂(x)

)
dmφ(x).

Along with (5.3) this entails the following.

Lemma 5.3 The probability measure mφ is exp(−φ̂)-conformal for the map F :
JF → JF .

Having Lemmas 5.3 and 5.2, the general theory of infinite iterated function systems,
as developed in [8,9], see also [10], gives the following.

Proposition 5.4 There exists a unique probability F-invariant measure μ
φ̂

which is

equivalent to mφ . Moreover the Radon–Nikodym derivative ρ̂:= dμ
φ̂

dmφ
is bounded above

and separated below from zero. This Radon–Nikodym derivative ρ̂ has a continuous
extension ρ̂ : B ′ → (0;+∞) to the whole ball B ′ and this extension is a fixed point
of the following transfer operator.

L
φ̂
(v)(x) =

∑
y∈F−1(x)

exp φ̂(y)v(y).

This is a bounded linear operator acting on the Banach space Cb(B) of all bounded
real-valued continuous functions defined on B, and it is easy to see that this operator
is almost periodic.

6 Real analyticity of topological pressure

For every Hölder continuous potential φ : J ( f ) → R, let

�φ :=
{
t ∈ R : sup(tφ)− inf(tφ) < κ f

}
,
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where κ f was defined in Theorem 1.1. Obviously,�ψ is an open subset of R. Having
all the material of the previous sections i.e. Sects. 4 and 5, particularly formula (5.4),
we can repeat verbatim Sect. 6, Real Analyticity of the Pressure Function, from [12]
to get the following.

Theorem 6.1 The topological pressure function

�φ � t �→ P(tφ) ∈ R

is real-analytic.

Remark 6.2 With only slight formal modification we could prove a little bit more;
namely that for any Hölder continuous functions ψ, φ : J ( f ) → R, the function

�φ(ψ) � t �→ P(ψ + tφ) ∈ R

is real-analytic if �φ(ψ):=
{
t ∈ R : sup(ψ + tφ)− inf(ψ + tφ) < κ f

}
.

7 Stochastic properties of the equilibrium measure μφ

In this section we obtain strong transparent stochastic properties of the dynamical
system ( f, μφ). We deduce them from the corresponding properties of the induced
system (F, μ

φ̂
). We follow the scheme worked out in [13] in the way it was presented

in [12]. We recall it briefly now. We do this in an abstract context. Let (�0,B0,m0) be
a measure space with a finite measure m0, let P0 be a countable measurable partition
of �0 and let T0 : �0 → �0 be a measurable map such that, for every �′ ∈ P0 the
map T0 : �′ → �0 is a bijection onto�0. Moreover, we assume that the partition P0
is generating, i.e. for every x, y ∈ �0 there exists s ≥ 0 such that T s

0 (x), T s
0 (y) are in

different elements of the partition P0. We denote by s = s(x, y) the smallest integer
with this property and we call it a separation time for the pair x, y. We assume also that
for each �′ ∈ P0 the map (T0|�′)−1 is measurable and that the Jacobian Jacm0(T0)

with respect to the measure m0 is well-defined and positive a.e. in �′. The following
distortion property is assumed to be satisfied.

∣∣∣∣ Jacm0 T0(x)

Jacm0 T0(y)
− 1

∣∣∣∣ ≤ Cκs(x,y). (7.1)

for all elements �′ ∈ P0, all x, y ∈ �′ and some κ ∈ (0, 1). We have also a function
R : �0 → N (“return time”) which is constant on each element of the partition P0.
We assume that the greatest common divisor of the values of R is equal to 1. Finally,
let

� = {(z, n) ∈ �0 × N ∪ {0} : 0 ≤ n < R(z)}
and each point z ∈ �0 is identified with (z, 0). The map T acts on � as

T (z, n) =
{
(z, n + 1) if n + 1 < R(z)

(T0(z), 0) if n + 1 = R(z)
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The measure m0 is spread over the whole space � by putting

m̃|�0 = m0 and m̃|�′×{ j} = m0|�′ ◦ π−1
j , �′ ∈ P0,

where π j (z, 0) = (z, j). Thus, the measure m̃ is finite iff
∫
�0

Rdm0 < ∞. The
separation time s((x, n), (y,m)) is defined to be equal to s(x, y) if n = m and x, y
are in the same set of the partition P . Otherwise we set s(x, y) = 0. Given any
β ∈ (0, 1) we define the space

Cβ(�) = {ϕ : � → R : ∃ Cϕ suchthat |ϕ(x)− ϕ(y)| < Cϕβ
s(x,y) ∀x, y ∈ �}.

We refer to the pentapol Y = (�0, T0,P0, R,m0) as a Young tower. The first three
items of the following basic result have been proved in [13], see also [7] for the fourth
item.

Theorem 7.1 If Y = (�0, T0,P0, R,m0) is a Young tower and
∫

Rdm0 < ∞ then
the following hold.

(1) There exists a unique probability T -invariant measure ν, absolutely continuous
with respect to m̃. The Radon–Nikodym derivative dν/dm̃ is bounded from below by
a positive constant. The dynamical system (T, ν) is exact, thus ergodic.
(2) If m0(R > n) = O(θn) for some 0 < θ < 1, then for every β > 0 there exists
0 < θ̃ < 1, depending on β, such that for all functions ψ ∈ L∞ and all functions
g ∈ Cβ we have,

Cov(ψ ◦ T n, g) =
∣∣∣∣
∫
(ψ ◦ T n)g dν −

∫
ψdν

∫
g dν

∣∣∣∣ = O(θ̃n) (7.2)

(3) If m0(R > n) = O(n−α)with someα > 1 (in particular, if m0(R > n) = O(θn)),
then the Central Limit Theorem is satisfied for all functions g ∈ Cβ , that are not
cohomologous to a constant in L2(ν).
(4) If m0(R > n) = O(n−α)with someα > 4 (in particular, if m0(R > n) = O(θn)),
then the Law of Iterated Logarithm holds for all β > 0 and all functions g ∈ Cβ ,
that are not cohomologous to a constant in L2(ν). This means that there exists a real
positive number Ag such that such that ν almost everywhere

lim sup
n→∞

Sng − n
∫

gdν√
n log log n

= Ag.

Passing to our holomorphic dynamical system ( f, μφ) we shall check that the
assumptions of this theorem are satisfied for our induced system (F,mφ). The space�0
is now JF , the limit set of the iterated function system F . The partition P0 consists of
the sets D∩JF , D ∈ D. The measure m0 is the conformal measure mφ , restricted to JF .
The map T0 is, in our setting, the map F . The function R, the return time, is, naturally,
defined as R(D) = n(D). We shall check that the pentapol Yφ = (JF , F,P, n,mφ)

is a Young Tower, i.e. it satisfies the hypotheses of Theorem 7.1. We start with the
following.
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Lemma 7.2 There exists a constant C > 0 such that if D ∈ D and x, y ∈ D, then

dist(x, y) ≤ C4−s(x,y).

Proof The assertion follows immediately from Corollary 2.3, formula (4.1), and the
definition of the separation time s. ��

As a fairly straightforward consequence of this lemma, we get the following.

Lemma 7.3 There exists a constant C ′ > 0 such that if D ∈ D and x, y ∈ D, then

dist(h j (x), h j (y)) ≤ C ′(1/4)n(D)− j+s(x,y)

for all 0 ≤ j ≤ n(D)− 1.

Proof Recall that for each D ∈ D we have F |D = hn(D) and h expands by a factor
equal at least 4 on each set hi (D) for all i = 0, . . . , n − 1. Therefore we can very
generously estimate,

dist(h j (x), h j (y) ≤ (1/4)n(D)− j dist(F(x), F(y))

By virtue of Lemma 7.2, this yields

dist(h j (x), h j (y) ≤ (1/4)n(D)− j C4−s(F(x),F(y)).

Now, if s(x, y) > 1, then s(F(x), F(y)) = s(x, y) − 1, and if s(x, y) = 1, then
s(F(x), F(y)) ≥ s(x, y)− 1. In any case inserting this to the last display, gives

dist(h j (x), h j (y) ≤ 4C(1/4)n(D)− j+s(x,y).

The proof is complete. ��

Lemma 7.4 The pentapol Yφ = (JF , F,P, n,mφ) is a Young Tower, i.e. it satisfies
the hypotheses of Theorem 7.1. In addition, m̃φ(�) < +∞.

Proof First, we need to show that the formula (7.1) holds. To do this fix an arbitrary
domain D ∈ D and arbitrary two points x, y ∈ JF ∩ D. Recalling that the function
Sqrφ : J ( f ) → R is Hölder continuous with some exponent α > 0, and using
Lemma 7.3, we can write as follows.
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∣∣∣∣∣log
Jacmφ F(y)

Jacmφ F(x)

∣∣∣∣∣ =
∣∣∣∣∣∣
n(D)−1∑

j=0

Sqrφ(h
j (y))−

n(D)−1∑
j=0

Sqrφ(h
j (x))

∣∣∣∣∣∣
≤

n(D)−1∑
j=0

∣∣∣Sqrφ(h
j (y))− Sqrφ(h

j (x))
∣∣∣

≤
n(D)−1∑

j=0

C1distα(h j (y), h j (x))

≤ C1C ′
n(D)−1∑

j=0

(1/4)n(D)− j+s(x,y)

= C1C ′(1/4)s(x,y)
n(D)−1∑

j=0

(1/4)n(D)− j

≤ C1C ′(1/4)s(x,y)
∞∑
j=0

(1/4) j

= (4/3)C1C ′(1/4)s(x,y).

and formula (7.1) is established.
We also need to take care of the last assumption in Theorem 7.1 requiring that the

greatest common divisor of all the values of n(D), D ∈ D, is equal to 1. If for our
induced system this value is equal to some integer s > 1, then we replace the map h
by its iterate hs . The return times are now equal to n(D)/s, D ∈ D, and their greatest
common divisor equals 1.

The finiteness of m̃φ(�) follows immediately from (5.4) and the definition of the
return time R. ��

Now consider π : � → P
k , the natural projection from the abstract tower� to the

projective space P
k given by the formula

π(z, n) = hn(z).

Then

π ◦ T = h ◦ π,
m̃φ

∣∣
JF

◦ π−1 = m0 = mφ, (7.3)

and
m̃φ |D×{n} ◦ π−1 = mφ |D×{0} ◦ h−n = m0|D ◦ h−n

for all D ∈ D and all 0 ≤ n ≤ n(D). Now, the measure m̃φ |D×{n} ◦ π−1 is
absolutely continuous with respect to mφ with the Radon–Nikodym derivative equal
to JD,n :=Jacmφ (h

−n) in hn(D) and zero elsewhere. Therefore,
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∫

Pk

∑
D∈D

n(D)−1∑
n=0

JD,n dmφ =
∑
D∈D

n(D)−1∑
n=0

∫

Pk

JD,n dmφ =
∑
D∈D

n(D)−1∑
n=0

∫
hn(D)

JD,n dmφ

=
∑
D∈D

n(D)−1∑
n=0

m̃φ |D×{n} ◦ π−1(hn(D))

=
∑
D∈D

n(D)−1∑
n=0

m̃φ |D×{n} ◦ π−1(Pk)

= m̃φ ◦ π−1(Pk) = m̃φ(�)

< +∞,

where in writing the inequality sign we used the last assertion of Lemma 7.4.
Thus, the function

∑
D∈D

∑
0≤n<n(D) JD,n is integrable with respect to the mea-

sure mφ . This implies immediately that the measure m̃φ ◦ π−1 is absolutely contin-
uous with respect to the measure mφ with the Radon–Nikodym derivative equal to∑

D∈D
∑

0≤n<n(D) JDi ,n . Hence, the measure ν ◦ π−1 is also absolutely continuous
with respect to mφ . Since ν is F-invariant and π ◦ T = h ◦ π , the measure ν ◦ π−1 is
h-invariant. But the measure μφ is h-invariant ergodic and equivalent with the confor-
mal measure mφ . Hence, ν ◦ π−1 is absolutely continuous with respect to the ergodic
measure μφ . Invariance and ergodicity of ν ◦ π−1 yield this.

Lemma 7.5
ν ◦ π−1 = μφ.

Having this, we can prove in exactly the same way as in [12], the following.

Theorem 7.6 For the dynamical system ( f, μφ) the following hold.

(1) For every α ≤ 1, every α-Hölder continuous function g : J ( f ) → R and every
bounded measurable function ψ : J ( f ) → R, we have that

∣∣∣∣
∫
ψ ◦ f n · gdμφ −

∫
gdμφ

∫
ψdμφ

∣∣∣∣ = O(θn)

for some 0 < θ < 1 depending on α.
(2) The Central Limit Theorem holds for every Hölder continuous function g :
J ( f ) → R that is not cohomologous to a constant in L2(μφ), i.e. for which there
is no square integrable function η for which g = const + η ◦ f − η. Precisely this
means that there exists σ > 0 such that

1√
n

n−1∑
j=0

g ◦ f j → N (0, σ )

in distribution.
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(3) The Law of Iterated Logarithm holds for every Hölder continuous function g :
J ( f ) → R that is not cohomologous to a constant in L2(μφ). This means that there
exists a real positive constant Ag such that such that μφ almost everywhere

lim sup
n→∞

Sng − n
∫

gdμ√
n log log n

= Ag.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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