19 research outputs found

    Solar chargers based on new dye-based photovoltaic modules and new supercapacitors

    Get PDF
    Electricity storage is one of the best-known methods of balancing the energy supply and demand at a given moment. The article presents an innovative solution for the construction of an electric energy storage device obtained from an innovative photovoltaic panel made of new dye-based photovoltaic modules and newly developed supercapacitors – which can be used as an emergency power source. In the paper, for the first time, we focused on the successful paring of new dye-sensitized solar cell (DSSC) with novel supercapacitors. In the first step, a microprocessor stand was constructed using Artificial Intelligence algorithms to control the parameters of the environment, as well as the solar charger composed of six DSSC cells with the dimensions of 100_100 mm and 126 CR2032 coin cells with a total capacitance of 60 F containing redox-active aqueous electrolyte. It was proven that the solar charger store enough energy to power, i.e. SOS transmitter or igniters, using a 5 V signal

    Składowe ogólnej sprawności fizycznej 13−16 letnich polskich futbolistów a ich codzienne odżywianie

    Get PDF
    У статті розглянуто питання взаємозв’язку між розвитком фізичної підготовленості футболістів віком 13−16 років із їх харчуванням. Установлено позитивну кореляцію між споживанням продуктів різного складу (молочних, фруктів, овочів) та розвитком швидкості, спритності й витривалості в юнаків

    Gaussian Model of Anti-Radar Properties for Coatings Based on Carbonyl Iron Powder

    No full text
    The article presents the Gaussian model of the electromagnetic radiation attenuation properties of two resin systems containing 75% or 80% of a carbonyl iron load as an absorber in the 4–18 GHz range. For the attenuation values obtained in the laboratory, mathematical fitting was performed in the range of 4–40 GHz to visualize the full curve characteristics. The simulated curves fitted up to a 0.998 R2 value of the experimental results. The in depth analysis of the simulated spectra allowed a thorough evaluation of the influence of the type of resin, absorber load, and layer thickness on reflection loss parameters such as the maximum attenuation, peak position, half-height width, and base slope of the peak. The simulated results were convergent with the literature findings, allowing a much deeper analysis. This confirmed that the suggested Gaussian model could provide additional information, useful in terms of comparative analyses of datasets

    Survival and growth rates of juvenile salmonids reared in lowland streams

    No full text
    The aim of this study was to assess the efficiency of propagating juvenile trout, Salmo trutta L. in small lowland streams and to evaluate the impact of the environmental conditions in the streams on the juvenile fish. Brown trout (Salmo trutta fario) and sea trout (Salmo trutta trutta) early fry fed under controlled conditions were used to stock third-order lowland streams. During summer, fall, and spring catches, fry were counted, measured, and weighed. The following parameters were calculated using the data collected: fry stocking density (ind. m-2); survival; specific mortality rate (SMR); length range; mean specimen length; body weight; mean body weight; specific growth rate (SGR); body condition (Fulton’s index). The ichthyological studies were accompanied by simultaneous analyses of environmental conditions that were performed monthly, and benthic macroinvertebrates were sampled in spring and fall. No differences were observed in the biological parameters analyzed between sea trout and brown trout. Variability in environmental parameters such as temperature, oxygenation, conductivity, and stream width and depth were associated with differentiation in the biological parameters of the fry. The results clearly indicate that the considerable potential of small lowland streams for the propagation of salmonid juvenile stages is currently underexploited

    DYNAMICS OF GASEOUS EMISSIONS DURING COMPOSTING OF SEWAGE SLUDGE WITH MAIZE STRAW AS A BULKING AGENT

    No full text
    In order to ensure proper composting of sewage sludge it is necessary to use bulking agents which will create favorable water and air conditions inside the pile and will be an additional source of carbon for the improvement of the C: N ratio of a composted mixture. However, the cereal straw widely used for composting of sewage sludge is very expensive and has a negative impact on the economic balance of the operations of a composting plant. Therefore, there is a need for novel, alternative materials that can be used as cheap and effective bulking agents for composting of sewage sludge. The aim of this study was to investigate the composting process of municipal sewage sludge and maize straw as a structural addition. The study was conducted in a specialized bioreactor for modeling aerobic or anaerobic decomposition process of organic materials. The bioreactor was equipped with 165-liter, thermally insulated chambers, controlled air flow and a system of gases and temperature analyzers. The studies have shown that composting of sewage sludge with the addition of maize straw leads to a very intense thermophilic phase resulting in strong emission of CO2. The usage of maize straw allowed to reduce the ammonia emissions and the amount of leachate. The obtained compost had favorable physicochemical and organoleptic properties, i.e. it showed neutral smell of the forest litter, good fragmentation and was not clammy

    PEDOT:PSS in Water and Toluene for Organic Devices—Technical Approach

    No full text
    Poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS) water and toluene solutions were investigated in detail, taking into consideration their stability, wettability, transparency, and electrochemical properties, along with change polarity caused by dopant. As dopant, methanol, ethanol, and isopropanol were used with different dipole moments (1.70, 1.69, and 1.66 D) and dielectric constants (33.0, 24.5, and 18.0). Three techniques, i.e., spin coating, doctor blade coating, and spray coating, were employed to created PEDOT:PSS layers on glass, glass/indium tin oxide (ITO), and glass/fluorine-doped tin oxide (FTO) substrates with optimized technical parameters for each used equipment. All used PEDOT:PSS water and toluene solutions demonstrated good wetting properties with angles below 30° for all used surfaces. Values of the energy bandgap (Eg) of PEDOT:PSS investigated by cyclic voltammetry (CV) in solution showed increase energy Eg along with addition of alcohol to the mixture, and they were found in the range of 1.20 eV to 2.85 eV. The opposite tendency was found for the Eg value of the PEDOT:PSS layer created from water solution. The storage effect on PEDOT:PSS layers detected by CV affected only the lowest unoccupied molecular orbital (LUMO) level, thereby causing changes in the energy bandgap. Finally, simple devices were constructed and investigated by infrared (IR) thermographic camera to investigate the surface defects on the created PEDOT:PSS layers. Our study showed that a more stable PEDOT:PSS layer without pin-holes and defects can be obtained from water and toluene solutions with isopropanol via the spin coating technique with an optimal speed of 3000 rpm and time of 90 s

    Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    No full text
    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge
    corecore