35 research outputs found

    Plasma medicine: The great prospects when physics meets medicine

    Get PDF
    The research has demonstrated the antimicrobial properties of plasma urging the incorporation of cold atmospheric plasma (CAP) decontamination in current clinical therapies with the aim to improve the benefits on the patients and on society.Postprint (published version

    Raw data from: Effectiveness of the production of tissue-engineered living bone graft – a comparative study using perfusion and rotating bioreactor systems

    No full text
    The primary goal of the research was to compare the effectiveness of 2 bioreactors: (1) perfusion (Lazar Arrow-MTM Micro Bioreactor System) and rotating (Rotary Cell Culture System) in the generation of a living bone construct to select the system that is more favorable for cell cultivation and their differentiation towards mature bone cells. For this purpose bone marrow-derived mesenchymal stem cells (BMDSCs) were seeded on the surfaces of hydroxyapatite-based scaffolds and cultured in three different conditions: (1) static 3D culture – a test control (mat_S), (2) 3D culture in a perfusion bioreactor (mat_P), and (3) dynamic 3D culture in a rotating bioreactor (mat_R). Cell growth on the scaffolds was assessed quantitatively by LDH total assay and qualitatively by live/dead staining, cytoskeleton staining, and SEM imaging. Osteogenic differentiation was compared by ELISAs and immunofluorescent staining, whereas ECM mineralization was determined using Raman spectroscopy. Folders: ‘cytoskeleton_staining 1d’ and ‘cytoskeleton_staining 21d’ contain raw CLSM images after cytoskeleton staining after 1 day (before placing the samples into the bioreactors) and 21 days of culture, respectively. Folder ‘live dead” contains raw CLSM images of the cells on the scaffold after live/dead staining (before placing the samples into the bioreactors).Folder ‘IF osteonectin_collagen” contains CLSM images after immunofluorescent staining of osteogenic markers.Folder ‘SEM’ contains raw SEM images after 21 days of culture.The name of the CLSM or SEM images indicates the specific sample and culture conditions, i.e. mat_S means static 3D culture, (2) mat_P means 3D culture in a perfusion bioreactor, and (3) mat_R means dynamic 3D culture in a rotating bioreactor.Folder ‘Raman_maps’ contains various Microsoft Excel (.csv) files. Each Microsoft Excel file contains the raw data for Raman mapping.Folder ‘Raman_spectra’ contains various Microsoft Excel (.csv) files. Each Microsoft Excel file contains the raw data for Raman spectra.For Raman data, file name indicates the type of the sample, i.e. mat_S, mat_P, mat_R, mat_control that means non-seeded biomaterial incubated in the culture medium, and native that means untreated biomaterial.Folder ‘ELISA_osteogenic markers’ contains various Microsoft Excel (.xlsx) files. Each Microsoft Excel file contains the raw results of ELISA for osteogenic marker (file name indicates the type of osteogenic marker). ELISA results are shown as concentration of specific osteogenic marker. Column B shows the name of the sample (mat_S, mat_P or mat_R).The Microsoft Excel (.xlsx) file named ‘LDH_proliferation’ contains the raw results of LDH total proliferation assay performed after 1 day of culture (before placing the samples into the bioreactors) and after 21 days of culture in specific conditions

    Research Data from: In Vitro Screening Studies on Eight Commercial Essential Oils-Derived Compounds to Identify Promising Natural Agents for the Prevention of Osteoporosis

    No full text
    The aim of this study was to evaluate the effect of eight commercially available EO-derived compounds ((R)-(+)-limonene, (S)-(-)-limonene, sabinene, carvacrol, thymol, alpha-pinene, beta-pinene, and cinnamaldehyde) on the bone formation process in vitro to select the most promising natural agents that could potentially be used in the prevention or treatment of osteoporosis. Within this study, evaluation of cytotoxicity, cell proliferation, and osteogenic differentiation was performed with the use of mouse primary calvarial preosteoblasts (MC3T3-E1). Moreover, extracellular matrix (ECM) mineralization was determined using MC3T3-E1 cells and dog adipose tissue-derived mesenchymal stem cells (ADSCs).This is a dataset related to the recently published article (Biomedicines 2023, 11, 1095. https://doi.org/10.3390/biomedicines11041095).Each GraphPad Prism file (.pzf) contains the results of LDH total proliferation assay for individual essential oil compound (file name indicates specific compound). GraphPad Prism 8.1.2 Software was used to generate these files. In “Data Table” you should select the name of the compound to see the results obtained for 3 repetitions of the test. The results are expressed as a “cell number x 104”. First row shows results for “24 hours” time interval and second row shows results for “72 hours” time interval. Group A always shows control cells, whereas Group B and Group C show different concentration of tested essential oils-derived compound.Each Microsoft Excel file (.csv) contains the results of either ARS mineralization test or ELISA for osteogenic markers (file name indicates the type of osteogenic marker or the cell type used for ARS mineralization test). The results of ARS are expressed as OD values. ELISA results are shown as concentration of specific osteogenic marker. Column B indicates control cells, columns C-R show results for different concentrations of tested essential oils-derived compounds.Abbreviations:DT – doubling timeOC – osteocalcinMC3T3-E1 – mouse preosteoblastsADSCs – adipose tissue-derived mesenchymal stem cellsARS – Alizarin Red S stainin

    Modification of bone chitosan/HA scaffold with β-1,3-glucan significantly improves its biocompatibility in vitro

    No full text
    Inżynieria tkankowa kości kładzie nacisk na produkcje trójwymiarowego, porowatego rusztowania, które posiadałoby zdolność stymulowania adhezji, proliferacji i różnicowania osteoblastów. Takie rusztowanie wspierałoby proces regeneracji i tworzenia funkcjonalnej tkanki kostnej [1-3]. Celem niniejszej pracy było udowodnienie za pomocą 2 linii osteoblastycznych, że dodatek β-1,3-glukanu do rusztowania na bazie chitosanu i hydroksyapatytu (chit/HA) skutkuje wytworzeniem nowego, trójskładnikowego kompozytu chitosan/β-1,3-glukan/hydroksyapatyt (chit/glu/HA), który posiada lepszą biokompatybilność w porównaniu do dwuskładnikowego materiału chit/HA. Trójskładnikowe rusztowanie wyprodukowano poprzez modyfikację kompozytu chit/HA za pomocą bakteryjnego β-1,3-glukanu jak to zostało opisane wcześniej [2,3]. Eksperymenty in vitro przeprowadzono z zastosowaniem linii komórkowej prawidłowych ludzkich płodowych osteoblastów (hFOB 1.19) oraz linii komórkowej mysich preosteoblastów (MC3T3-E1 Subclone 4). Cytotoksyczność materiałów oznaczono metodą kontaktu bezpośredniego za pomocą podwójnego barwienia fluorescencyjnego „żywe/martwe komórki”. Kalceina-AM barwi na zielono jedynie żywe komórki, natomiast jodek propidyny barwi kwasy nukleinowe martwych komórek emitując czerwoną fluorescencję jader komórkowych. Wybarwione komórki obserwowano w mikroskopie konfokalnym. Liczbę osteoblastów przyklejonych do powierzchni rusztowań kostnych określono ilościowo po lizie komórek za pomocą testu LDH total. Wzrost i proliferację komórek na powierzchni biokompozytów oceniono poprzez obserwację w mikroskopie konfokalnym stosując podwójne barwienie fluorescencyjne cytoszkieltu i jąder komórkowych. Komórki linii hFOB 1.19 i MC3T3-E1 hodowano bezpośrednio na powierzchni biomateriałów przez 9 dni. Co trzeci dzień komórki barwiono za pomocą barwników fluorescencyjnych AlexaFluor635phalloidin i Hoechst 33342 w celu oceny ich morfologii oraz wzrostu ich liczby w czasie. Barwnik AlexaFluor635phalloidin zapewnia czerwoną fluorescencję filamentów cytoszkieletu, natomiast Hoechst 33342 barwi jadra komórkowe na niebiesko. Barwienie „żywe/martwe komórki” wykazało zgrupowania żywych, emitujących zieloną fluorescencje komórek na powierzchni obydwu biokompozytów (chit/HA i chit/glu/HA). Jednakże, komórki hFOB 1.19 porastające powierzchnię rusztowania chit/HA były okrągłe i nie wykazywały typowego dla ich morfologii podłużnego kształtu, co sugeruje, że nie przykleiły się do powierzchni chit/HA (RYS.1). Ponadto, na powierzchni materiału chit/HA zaobserwowano dość dużą liczbę martwych, czerwonych komórek linii hFOB 1.19. Komórki hFOB 1.19 hodowane na powierzchni chit/glu/HA były rozpłaszczone i miały podłużny kształt, co świadczy o ich dobrej adhezji do powierzchni tego materiału. Komórki linii MC3T3-E1 porastające powierzchnię obydwu materiałów były rozpłaszczone i miały typowy dla nich gwiazdkowaty kształt. Jedynie pojedyncze martwe, czerwone komórki MC3T3-E1 zaobserwowano na powierzchni tych kompozytów. Jednakże w porównaniu do rusztowania chit/glu/HA, zdecydowanie mniej komórek MC3T3-E1 było na powierzchni kompozytu chit/HA. LDH total test wykazał znacząco lepszą adhezję komórek hFOB 1.19 i MC3T3-E1 do powierzchni materiału chit/glu/HA (RYS. 2). Trzy godziny od momentu inokulacji rusztowań, do powierzchni kompozytu chit/HA przykleiło się 30% (1.6 x 104) komórek linii hFOB 1.19, natomiast do materiału chit/glu/HA 50% (2.6x104) komórek. W przypadku komórek linii MC3T3-E1, do materiału chit/HA przykleiło się 20% (1.9x104) komórek, a do kompozytu chit/glu/HA aż 70% Obserwacja mikroskopowa wykazała dobry wzrost i proliferację osteoblastów linii hFOB 1.19 i MC3T3-E1 jedynie na rusztowaniu chit/glu/HA (RYS. 3). Liczba komórek porastających powierzchnię chit/glu/HA wzrastała wraz z wydłużającym się czasem hodowli in vitro. Osteoblasty miały typową dla danej linii komórkowej morfologię i dobrze rozbudowany cytoszkielet. Fluoryzujące na niebiesko jądra komórkowe były również bardzo dobrze widoczne. Po 9 dniach prowadzenia hodowli, powierzchnia rusztowania chit/glu/HA była pokryta wielowarstwą komórek linii Hiob 1.19 i MC3T3-E1, które posiadały dobrze rozwiniętą sieć filamentów cytoszkieletu i liczne wypustki cytoplazmatyczne. Osteoblasty hodowane na materiale chit/glu/HA były rozpłaszczone i posiadały dobrze rozbudowaną strukturę cytoszkieletu, co sugeruje, że ten materiał sprzyja adhezji i proliferacji komórek. Udowodniono, że materiał chit/HA całkowicie nie sprzyja adhezji, wzrostowi i proliferacji komórek hFOB 1.19. Przez cały czas trwania eksperymentu na powierzchni chit/HA zaobserwowano jedynie pojedyncze, okrągłe komórki hFOB 1.19. Co więcej, ich liczba nie wzrastała w czasie, a komórki były drobne i okrągłe, co może świadczyć o tym, że były martwe. W przypadku komórek linii MC3T3-E1, 3 dni po inokulacji materiału chit/HA zaobserwowano jedynie pojedyncze komórki na powierzchni próbki (RYS. 3). Ponadto, komórki MC3T3-E1 były okrągłe i nie miały typowego gwiazdkowego kształtu, co świadczy o ich słabej adhezji do powierzchni chit/HA. Jednakże, liczba komórek MC3T3-E1 wzrastała w czasie i po 9 dniach prowadzenia hodowli na powierzchni materiału chit/HA zaobserwowano obszary o małej gęstości komórek MC3T3-E1, które miały gwiazdkowaty kształt, widoczny cytoszkielet i wypustki cytoplazmatyczne. Przeprowadzone eksperymenty in vitro oraz uzyskane zdjęcia z mikroskopu konfokalnego wyraźnie udowadniają, że dodatek β-1,3-glukanu do rusztowania chit/HA stymuluje adhezję, wzrost i proliferację komórek linii hFOB 1.19 i MC3T3-E1. Oba testowane biomateriały były nietoksyczne i pozwalały na wstępną adhezję komórek. Jednakże na powierzchni rusztowania zawierającego β-1,3-glukan zaobserwowano znacząco lepsze rozpłaszczanie się komórek, ich szybszy wzrost i proliferację. Analizując uzyskane wyniki można wysnuć wniosek, że nowy trójskładnikowy kompozyt jest obiecującym materiałem do stosowania w inżynierii tkankowej kości jako rusztowanie komórek mające za zadanie przyspieszenie procesów regeneracyjnych oraz tworzenie nowej, funkcjonalnej tkanki kostnej. (7x104) komórek.Bone tissue engineering put emphasis on fabrication three-dimensional porous scaffolds that possess ability to enhance adhesion, proliferation and differentiation of osteoblast cells, therefore supporting bone regeneration and functional bone tissue formation [1-3]. The aim of this work was to prove using 2 osteoblastic cell lines that addition of β-1,3-glucan to chitosan/hydroxyapatite (chit/HA) scaffold results in fabrication of novel tri-component chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) composite that possesses better biocompatibility compared to bi-component chit/HA material. Tri-component scaffold was fabricated by modification of chit/HA composite with bacterial β-1,3-glucan as was described previously [2,3]. In vitro experiments were carried out using human foetal osteoblast cell line (hFOB 1.19) and mouse calvarial preosteoblast cell line (MC3T3-E1 Subclone 4). Cytotoxicity of the scaffolds was evaluated by direct-contact method using live/dead double fluorescent staining. The calcein-AM dye stains only viable cells giving green fluorescence and propidium iodide dye stains nucleic acids of only dead cells emitting red fluorescence. Stained cells were observed under confocal microscope. Cell adhesion to the scaffold surfaces was determined quantitatively after cell lysis by LDH total test. Cell growth and proliferation on the biocomposite surfaces were evaluated by confocal microscope observation using double fluorescent staining of osteoblast cytoskeleton and nuclei. HFOB 1.19 and MC3T3-E1 cells were cultured directly on the scaffold surfaces for 9 days and every third day cells were stained with AlexaFluor635phalloidin and Hoechst 33342 fluorescent dyes in order to assess cell morphology and increase in cell number. AlexaFluor635phalloidin dye provides red fluorescence of cytoskeletal filaments, while Hoechst 33342 gives blue fluorescence of nuclei. Live/dead double staining showed clusters of viable green fluorescent osteoblast cells on the surface of both biocomposite samples (chit/HA and chit/glu/HA). However, hFOB 1.19 cells growing on the chit/HA surface were spherical and did not reveal their typical lengthened shape what indicates that hFOB 1.19 cells were not attached to the chit/HA surface (FIG.1). Moreover, there were quite a lot of dead, red fluorescent hFOB 1.19 cells on the chit/HA material. HFOB 1.19 cells cultured on the chit/glu/HA sample were flattened and had lengthened shape what proves their good adhesion to the composite surface. MC3T3-E1 cells growing on both materials were flattened and revealed typical stellar shape. Only occasional dead red fluorescent cells were observed. However, there were meaningfully less MC3T3-E1 cells on the surface of chit/HA composite compared to chit/glu/HA sample. LDH total assay demonstrated significantly higher number of hFOB 1.19 and MC3T3-E1 cells attached to the chit/glu/HA compared to the chit/HA sample (FIG. 2). Three hours after cell inoculation there were 30% (1.6x104 cells) and 50% (2.6x10/4 cells) of hFOB 1.19 cells attached to the chit/HA and chit/glu/HA composites, respectively and 20% (1.9x104 cells) and 70% (7x104 cells) of MC3T3-E1 cells attached to the chit/HA and chit/glu/HA scaffolds, respectively. Microscopic observation showed good osteoblast growth and proliferation only on chit/glu/HA scaffold (FIG.3). The number of hFOB 1.19 and MC3T3-E1 cells growing on the chit/glu/HA increased with time during the in vitro culture. Osteoblasts revealed their typical morphology and had well extensive cytoskeleton. There were also well visible blue fluorescent nuclei. After 9-day culture, chit/glu/HA surface was covered by multilayer of hFOB 1.19 and MC3T3-E1 cells, which revealed extensive network of cytoskeletal filaments and numerous filopodia. Osteoblast cells cultured on the chit/glu/HA were well spread, flattened and generated large filamentous structure of the cytoskeleton what indicates that this scaffold is very favourable to cell adhesion and proliferation. The chit/HA biomaterial was proved to be completely unfavourable to adhesion, growth, and proliferation of hFOB 1.19 cells. Only single spherical hFOB 1.19 cells were observed on the chit/HA sample throughout the full length of the experiment. Moreover, the hFOB 1.19 cell number did not increase with time, cells were tiny and spherical what may indicate that were already dead. In the case of MC3T3-E1 cells, 3 days after cell seeding there were only individual MC3T3-E1 cells on the chit/HA surface (Fig. 3). Furthermore, visualized MC3T3-E1 cells were spherical and did not reveal typical stellar shape what indicates that cells were not well attached. However, the number of MC3T3-E1 cells increased with time and 9 days after cell inoculation there was low density culture of stellar shape MC3T3-E1 cells with visible cytoskeleton and filopodia on the chit/HA material. Conducted in vitro experiments and obtained confocal microscopy images clearly prove that addition of β-1,3-glucan to the chit/HA scaffold enhances adhesion, growth, and proliferation of hFOB 1.19 and MC3T3-E1 cells. Both investigated biomaterials were non-toxic and allowed for initial cell attachment. However, significantly better cell spreading, growth, and proliferation were observed on the scaffold containing β-1,3-glucan. Based on the obtained results, it may be inferred that novel tri-component composite is promising material for bone tissue engineering applications as cell scaffold to accelerate bone regeneration and new bone formation process

    Chitosan/β-1,3-glucan/HA bone scaffold possesses osteopromotive properties in vitro

    No full text

    Raw data from: Effectiveness of the production of tissue-engineered living bone graft – a comparative study using perfusion and rotating bioreactor systems

    No full text
    The primary goal of the research was to compare the effectiveness of 2 bioreactors: (1) perfusion (Lazar Arrow-MTM Micro Bioreactor System) and rotating (Rotary Cell Culture System) in the generation of a living bone construct to select the system that is more favorable for cell cultivation and their differentiation towards mature bone cells. For this purpose bone marrow-derived mesenchymal stem cells (BMDSCs) were seeded on the surfaces of hydroxyapatite-based scaffolds and cultured in three different conditions: (1) static 3D culture – a test control (mat_S), (2) 3D culture in a perfusion bioreactor (mat_P), and (3) dynamic 3D culture in a rotating bioreactor (mat_R). Cell growth on the scaffolds was assessed quantitatively by LDH total assay and qualitatively by live/dead staining, cytoskeleton staining, and SEM imaging. Osteogenic differentiation was compared by ELISAs and immunofluorescent staining, whereas ECM mineralization was determined using Raman spectroscopy. Folders: ‘cytoskeleton_staining 1d’ and ‘cytoskeleton_staining 21d’ contain raw CLSM images after cytoskeleton staining after 1 day (before placing the samples into the bioreactors) and 21 days of culture, respectively. Folder ‘live dead” contains raw CLSM images of the cells on the scaffold after live/dead staining (before placing the samples into the bioreactors).Folder ‘IF osteonectin_collagen” contains CLSM images after immunofluorescent staining of osteogenic markers.Folder ‘SEM’ contains raw SEM images after 21 days of culture.The name of the CLSM or SEM images indicates the specific sample and culture conditions, i.e. mat_S means static 3D culture, (2) mat_P means 3D culture in a perfusion bioreactor, and (3) mat_R means dynamic 3D culture in a rotating bioreactor.Folder ‘Raman_maps’ contains various Microsoft Excel (.csv) files. Each Microsoft Excel file contains the raw data for Raman mapping.Folder ‘Raman_spectra’ contains various Microsoft Excel (.csv) files. Each Microsoft Excel file contains the raw data for Raman spectra.For Raman data, file name indicates the type of the sample, i.e. mat_S, mat_P, mat_R, mat_control that means non-seeded biomaterial incubated in the culture medium, and native that means untreated biomaterial.Folder ‘ELISA_osteogenic markers’ contains various Microsoft Excel (.xlsx) files. Each Microsoft Excel file contains the raw results of ELISA for osteogenic marker (file name indicates the type of osteogenic marker). ELISA results are shown as concentration of specific osteogenic marker. Column B shows the name of the sample (mat_S, mat_P or mat_R).The Microsoft Excel (.xlsx) file named ‘LDH_proliferation’ contains the raw results of LDH total proliferation assay performed after 1 day of culture (before placing the samples into the bioreactors) and after 21 days of culture in specific conditions.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Research Data from: In Vitro Screening Studies on Eight Commercial Essential Oils-Derived Compounds to Identify Promising Natural Agents for the Prevention of Osteoporosis

    No full text
    The aim of this study was to evaluate the effect of eight commercially available EO-derived compounds ((R)-(+)-limonene, (S)-(-)-limonene, sabinene, carvacrol, thymol, alpha-pinene, beta-pinene, and cinnamaldehyde) on the bone formation process in vitro to select the most promising natural agents that could potentially be used in the prevention or treatment of osteoporosis. Within this study, evaluation of cytotoxicity, cell proliferation, and osteogenic differentiation was performed with the use of mouse primary calvarial preosteoblasts (MC3T3-E1). Moreover, extracellular matrix (ECM) mineralization was determined using MC3T3-E1 cells and dog adipose tissue-derived mesenchymal stem cells (ADSCs).This is a dataset related to the recently published article (Biomedicines 2023, 11, 1095. https://doi.org/10.3390/biomedicines11041095).Each GraphPad Prism file (.pzf) contains the results of LDH total proliferation assay for individual essential oil compound (file name indicates specific compound). GraphPad Prism 8.1.2 Software was used to generate these files. In “Data Table” you should select the name of the compound to see the results obtained for 3 repetitions of the test. The results are expressed as a “cell number x 104”. First row shows results for “24 hours” time interval and second row shows results for “72 hours” time interval. Group A always shows control cells, whereas Group B and Group C show different concentration of tested essential oils-derived compound.Each Microsoft Excel file (.csv) contains the results of either ARS mineralization test or ELISA for osteogenic markers (file name indicates the type of osteogenic marker or the cell type used for ARS mineralization test). The results of ARS are expressed as OD values. ELISA results are shown as concentration of specific osteogenic marker. Column B indicates control cells, columns C-R show results for different concentrations of tested essential oils-derived compounds.Abbreviations:DT – doubling timeOC – osteocalcinMC3T3-E1 – mouse preosteoblastsADSCs – adipose tissue-derived mesenchymal stem cellsARS – Alizarin Red S stainingTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    The effect of biomaterials ion reactivity on cell viability in vitro

    No full text
    Powszechnie wiadomo, że reaktywne jonowo biomateriały indukują różne interakcje z otaczającym środowiskiem, powodując zmiany stężenia jonów, zwłaszcza kluczowych jonów takich jak wapń, magnez i fosfor, co może wpływać na metabolizm i żywotność komórek. Głównym składnikiem części mineralnej kości i zębów jest hydroksyapatyt (HAp) (Ca10(PO4)6(OH)2). W celu polepszenia własności mechanicznych oraz poręczności chirurgicznej hydroksyapatytu można połączyć go z dodatkowym komponentem organicznym np. polisacharydowym. W niniejszej pracy oznaczano reaktywność jonową oraz cytotoksyczność 2 typów kompozytów na bazie glukanu (kompozytu glukan-HAp i kompozytu glukan-C-HAp) oraz poszczególnych ich składników: wysokoporowatych granul hydroksyapatytu (HAp), wysokoporowatych granul HAp węglanowo-magnezowych (C-HAp) oraz glukanu. Reaktywność jonową testowanych materiałów oznaczono za pomocą absorpcyjnej spektrometrii atomowej (ASA). Badania in vitro przeprowadzono z zastosowaniem linii komórkowej hFOB 1.19 (ludzkie płodowe osteoblasty) oraz pierwotnej hodowli fibroblastów skóry (HSF). Cytotoksyczność ekstraktów z biomateriałów określono z użyciem 2 testów - MTT i NRU. Wyniki badań wyraźnie wskazały, że dodatek wysokoporowatych granul HAp i C-HAp do glukanu powoduje, że kompozyt jest reaktywny jonowo, co wpływa na metabolizm i żywotność hodowanych komórek.It is widely known that surface-reactive biomaterials induce various interaction with surrounded environment, causing changes in the ion concentration, especially with respect to the crucial ions such as calcium, magnesium and phosphorous, what may significantly affect the cell metabolism and viability. Hydroxyapatite (HAp) (Ca10(PO4)6(OH)2) is the main inorganic component of bones and teeth. In order to improve mechanical properties and surgical handiness of hydroxyapatite, an organic component e.g. polysaccharide can be added. In this work, the ion reactivity and cytotoxicity of 2 types of glucan-based composites (composite glucan-HAp and composite glucan-C-HAp) were evaluated. Additionally, the ion reactivity and cytotoxicity of each component of the composites: highly porous hydro- xyapatite (HAp), highly porous carbonated-Mg-HAp (C-HAp) and glucan were evaluated. The ion reactivity of tested materials was assessed by atomic absorption spectrometry (AAS). In vitro tests were carried out using hFOB 1.19 cell line (human fetal osteoblast cells) and human skin fibroblast primary cell culture (HSF). The cytotoxicity of biomaterials extracts was estimated by 2 methods - MTT and NRU. Our studies clearly indicated that addition of highly porous HAp and C-HAp granules to the glucan, make the composite ion reactive, what affects the metabolism and viability of cultured cells

    The biocompatibility assessment of chitosan-based composites for bone tissue engineering

    No full text

    Biological evaluation of β-1,3-glucan/HA bone scaffold fabricated via new method

    No full text
    corecore