63 research outputs found

    Automated approaches for band gap mapping in STEM-EELS

    Full text link
    Band gap variations in thin film structures, across grain boundaries, and in embedded nanoparticles are of increasing interest in the materials science community. As many common experimental techniques for measuring band gaps do not have the spatial resolution needed to observe these variations directly, probe-corrected Scanning Transmission Electron Microscope (STEM) with monochromated Electron Energy-Loss Spectroscopy (EELS) is a promising method for studying band gaps of such features. However, extraction of band gaps from EELS data sets usually requires heavy user involvement, and makes the analysis of large data sets challenging. Here we develop and present methods for automated extraction of band gap maps from large STEM-EELS data sets with high spatial resolution while preserving high accuracy and precision

    Accurate determination of domain boundary orientation in LaNbO4

    Get PDF
    The orientation relationship between ferroelastic domains in LaNbO4 (with 0.5 at.% Sr) is studied by selected area electron diffraction and high-resolution electron microscopy. At room temperature the domains are related through a simple rotation of approximately 95 degrees about the monoclinic [0 1 0] axis, and the interface between two adjacent domains is highly ordered. The domain boundary is found to be the (2 0 5.10)/(5.10 0 2) planes of the two domains, in excellent agreement with our theoretical predictions. This orientation differs considerably from that predicted by more elaborate ferroelastic theory

    Valence band study of thermoelectric Zintl-phase SrZn_2Sb_2 and YbZn_2Sb_2: X-ray photoelectron spectroscopy and density functional theory

    Get PDF
    The electronic structure of SrZn_2Sb_2 and YbZn_2Sb_2 is investigated using density functional theory and high-resolution x-ray photoemission spectroscopy. Both traditional Perdew-Burke-Ernzerhof and state-of-the-art hybrid Heyd-Scuseria-Ernzerhof functionals have been employed to highlight the importance of proper treatment of exchange-dependent Zn  3d states, Yb 4f states, and band gaps. The role of spin-orbit corrections in light of first-principles transport calculations are discussed and previous claims of Yb^(3+) valence are investigated with the assistance of photoelectron as well as scanning and transmission electron microscopy

    Space–charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3−δ.

    Get PDF
    The specific grain interior and grain boundary conductivities, obtained from impedance spectroscopy and the brick layer model, are reported for BaZr0.9Y0.1O3−δ as a function of pO2 and temperature. pO2-dependencies were indicative of dominating ionic and p-type electronic conduction for the grain interior under reducing and oxidizing conditions, respectively, while the grain boundaries showed an additional n-type electronic contribution under reducing conditions. Transmission electron microscopy revealed enrichment of Y in the grain boundary region. These findings indicate the existence of space–charge layers in the grain boundaries. A grain boundary core–space–charge layer model is therefore applied to interpret the data. Using a Mott–Schottky approximation, a Schottky barrier height of 0.5–0.6 V and an effective grain boundary width of 8–10 nm (=2× space–charge layer thickness) is obtained at 250 °C in wet oxygen. Finite-element modelling of the complex impedance over a grain boundary with a space–charge layer depletion of protons yields a distorted semicircle as observed in the impedance spectra

    In-situ electron loss spectroscopy reveals surface dehydrogenation of hydrated ceria nanoparticles at elevated temperatures

    Get PDF
    Ceria (CeO2) exhibits high reversible oxygen storage capacity at intermediate temperatures (500–800 °C) related to an extraordinary and not fully understood reduction of its surfaces. We have investigated pristine and alcohol-dispersed commercially available ceria nanoparticles by in-situ scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) to examine the dynamic changes during the initial redox reaction process of ceria nanoparticles in an ultra-high vacuum atmosphere using an in-situ heating holder. High spatially resolved EELS was used to estimate the amounts of Ce3+ and Ce4+ in the nanoparticles as a function of temperature, based on the white-line ratios M5/M4 of the EELS spectra. The results show a nm-range thick surface layer rich in Ce3+ on pristine particles prior to heating. During heating, this oxidises to Ce4+. Heating in high vacuum should normally not lead to oxidation, but the observed results can be understood if the surface layer has an oxyhydroxide composition such as CeOOH, which by heating in the vacuum dehydrogenates and hence oxidises to CeO2, a process that requires diffusion of hydrogen only. This process occurred for all samples, but was more pronounced for the particles that were previously dispersed in ethanol. Thermogravimetric analysis (TGA) by heating the pristine powder in dry atmosphere yielded a considerable weight loss confirming the content of hydroxide and probably water in and on the CeO2 particles. The results suggest that CeO2 surfaces are reduced to a layer of oxyhydroxide by hydrogen-containing molecules like water vapour or alcohols.publishedVersio

    Self-diffusion in Zn 4 Sb 3 from first-principles molecular dynamics

    Get PDF
    a b s t r a c t The Zn 4 Sb 3 system is promising for thermoelectric applications due to its very low thermal conductivity coupled with a good power factor. Molecular dynamics calculations based on density functional theory were carried out for different stoichiometries of Zn 4 Sb 3 , corresponding to three situations: the composition Zn 3.6 Sb 3 (actually Zn 6 Sb 5 with only one Zn site occupied), a slightly higher Zn content Zn 3.8 Sb 3 (with some of the Zn atoms in interstitial sites), and a slightly lower Zn content Zn 3.4 Sb 3 (with some Zn vacancies). The diffusivity was calculated for different temperatures and the diffusion coefficient plotted in Arrhenius plots. The results compare well with experimental data, and point to a highly mobile Zn species with a very high diffusion coefficient prefactor

    Investigation of the electrostatic potential of a grain boundary in Y-substituted BaZrO3 using inline electron holography

    Full text link
    We apply inline electron holography to investigate the electrostatic potential across an individual BaZr0.9Y0.1O3 grain boundary. With holography, we measure a grain boundary potential of -1.3 V. Electron energy loss spectroscopy analyses indicate that barium vacancies at the grain boundary are the main contributors to the potential well in this sample. Furthermore, geometric phase analysis and density functional theory calculations suggest that reduced atomic density at the grain boundary also contributes to the experimentally measured potential well

    Operando Laboratory-Based Multi-Edge X-Ray Absorption Near-Edge Spectroscopy of Solid Catalysts

    Get PDF
    Laboratory-based X-ray absorption spectroscopy (XAS) and especially X-ray absorption near-edge structure (XANES) offers new opportunities in catalyst characterization and presents not only an alternative, but also a complementary approach to precious beamtime at synchrotron facilities. We successfully designed a laboratory-based setup for performing operando , quasi-simultaneous XANES analysis at multiple K edges, more specifically, operando XANES of mono-, bi-, and trimetallic CO 2 hydrogenation catalysts containing Ni, Fe, and Cu. Detailed operando XANES studies of the multi-element solid catalysts revealed metal-dependent differences in the reducibility and re-oxidation behavior and their influence on the catalytic performance in CO 2 hydrogenation. The applicability of operando laboratory-based XANES at multiple K edges paves the way for advanced multi-element catalyst characterization complementing detailed studies at synchrotron facilities.Peer reviewe

    Plasmonic properties of aluminium nanowires in amorphous silicon

    Get PDF
    Plasmonic structures can help enhance optical activity in the ultraviolet (UV) region and therefore enhancing photocatalytic reactions and the detection of organic and biological species. Most plasmonic structures are composed of Ag or Au. However, producing structures small enough for optical activity in the UV region has proved difficult. In this study, we demonstrate that aluminium nanowires are an excellent alternative. We investigated the plasmonic properties of the Al nanowires as well as the optoelectronic properties of the surrounding a − Si matrix by combining scanning transmission electron microscopy imaging, electron energy loss spectroscopy and electrodynamic modelling. We have found that the Al nanowires have distinct plasmonic modes in the UV and far UV region, from 0.75 eV to 13 eV. In addition, simulated results found that the size and spacing of the Al nanowires, as well as the embedding material were shown to have a large impact on the type of surface plasmon energies that can be generated in the material. Using electromagnetic modelling, we have identified the modes and illustrated how they could be tuned further.publishedVersio
    • …
    corecore