54 research outputs found
Permission form synopses to improve parents' understanding of research: a randomized trial.
ObjectiveWe hypothesized that, among parents of potential neonatal research subjects, an accompanying cover sheet added to the permission form (intervention) would increase understanding of the research, when compared to a standard form (control).Study designThis pilot study enrolled parents approached for one of two index studies: one randomized trial and one observational study. A one-page cover sheet described critical study information. Families were randomized 1:1 to receive the cover sheet or not. Objective and subjective understanding and satisfaction were measured.ResultsThirty-two parents completed all measures (17 control, 15 intervention). There were no differences in comprehension score (16.8±5.7 vs 16.3±3.5), subjective understanding (median 6 vs 6.5), or overall satisfaction with consent (median 7 vs 6.5) between control and intervention groups (all P>0.50).ConclusionA simplified permission form cover sheet had no effect on parents' understanding of studies for which their newborns were being recruited
Surfactant status and respiratory outcome in premature infants receiving late surfactant treatment.
BACKGROUND:Many premature infants with respiratory failure are deficient in surfactant, but the relationship to occurrence of bronchopulmonary dysplasia (BPD) is uncertain. METHODS:Tracheal aspirates were collected from 209 treated and control infants enrolled at 7-14 days in the Trial of Late Surfactant. The content of phospholipid, surfactant protein B, and total protein were determined in large aggregate (active) surfactant. RESULTS:At 24 h, surfactant treatment transiently increased surfactant protein B content (70%, p < 0.01), but did not affect recovered airway surfactant or total protein/phospholipid. The level of recovered surfactant during dosing was directly associated with content of surfactant protein B (r = 0.50, p < 0.00001) and inversely related to total protein (r = 0.39, p < 0.0001). For all infants, occurrence of BPD was associated with lower levels of recovered large aggregate surfactant, higher protein content, and lower SP-B levels. Tracheal aspirates with lower amounts of recovered surfactant had an increased proportion of small vesicle (inactive) surfactant. CONCLUSIONS:We conclude that many intubated premature infants are deficient in active surfactant, in part due to increased intra-alveolar metabolism, low SP-B content, and protein inhibition, and that the severity of this deficit is predictive of BPD. Late surfactant treatment at the frequency used did not provide a sustained increase in airway surfactant
Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells
BACKGROUND: It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A), the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. METHODS: H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. RESULTS: Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK) phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. CONCLUSION: Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway
Serum markers in interstitial pneumonia with and without Pneumocystis jirovecii colonization: a prospective study
<p>Abstract</p> <p>Background</p> <p>In patients with chronic respiratory disease, <it>Pneumocystis jirovecii (P. jirovecii) </it>colonization is observed, and may influence disease progression and systemic inflammation. <it>Pneumocystis </it>pneumonia causes interstitial changes, so making a diagnosis of PCP in patients who have interstitial pneumonia (IP) with <it>P. jirovecii </it>colonization is sometimes difficult based on radiography.</p> <p>Methods</p> <p>This study investigated the prevalence of <it>P. jirovecii </it>colonization in IP patients and assessed pulmonary injury due to <it>P. jirovecii </it>colonization by measurement of serum markers (KL-6, SP-A, SP-D, and (1→3) β-D-glucan (β-D-glucan)) and the peripheral lymphocyte counts, prospectively. A total of 75 patients with idiopathic pulmonary fibrosis (n = 29), collagen vascular-related interstitial pneumonia (n = 19), chronic bronchitis or pneumonia (n = 20), and <it>Pneumocystis </it>pneumonia (n = 7) were enrolled in this prospective study. <it>P. jirovecii </it>DNA was detected in sputum samples, while serum markers and the lymphocyte count were measured in the peripheral blood.</p> <p>Results</p> <p>IP patients (idiopathic pulmonary fibrosis and collagen vascular-related IP) who received oral corticosteroids had a high prevalence of <it>P. jirovecii </it>colonization (23.3%). In IP patients, oral corticosteroid therapy was a significant risk factor for <it>P. jirovecii </it>colonization (<it>P </it>< 0.05). Serum markers did not show differences between IP patients with and without <it>P. jirovecii </it>colonization. The β-D-glucan level and lymphocyte count differed between patients with <it>Pneumocystis </it>pneumonia or <it>P. jirovecii </it>colonization.</p> <p>Conclusion</p> <p>Serum levels of KL-6, SP-A, SP-D, and β-D-glucan were not useful for detecting <it>P. jirovecii </it>colonization in IP patients. However, the serum β-D-glucan level and lymphocyte count were useful for distinguishing <it>P. jirovecii </it>colonization from <it>pneumocystis </it>pneumonia in IP patients.</p
Effects of the TLR2 Agonists MALP-2 and Pam3Cys in Isolated Mouse Lungs
Background: Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam 3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings: Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/ mL), Pam3Cys (160 ng/mL) or LPS (1 mg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1b, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2a) and Ptgs2. MALP-2 was more potent than Pam 3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam 3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs
Recommended from our members
Respiratory consequences of prematurity: Evolution of a diagnosis and development of a comprehensive approach
© 2015 Nature America, Inc.Bronchopulmonary dysplasia (BPD) is the most common respiratory consequence of premature birth and contributes to significant short- and long-term morbidity, mortality and resource utilization. Initially defined as a radiographi
Glycogen synthase kinase-3beta/beta-catenin signaling In neonatal lung mesenchymal stromal cell myofibroblastic differentiation
In bronchopulmonary dysplasia (BPD), alveolar septa are thickened with collagen and α-smooth muscle actin-, transforming growth factor (TGF)-β-positive myofibroblasts. We examined the biochemical mechanisms underlying myofibroblastic differentiation, focusing on the role of glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. In the cytoplasm, β-catenin is phosphorylated on the NH2 terminus by constitutively active GSK-3β, favoring its degradation. Upon TGF-β stimulation, GSK-3β is phosphorylated and inactivated, allowing β-catenin to translocate to the nucleus, where it activates transcription of genes involved in myofibroblastic differentiation. We examined the role of β-catenin in TGF-β1-induced myofibroblastic differentiation of neonatal lung mesenchymal stromal cells (MSCs) isolated from tracheal aspirates of premature infants with respiratory distress. TGF-β1 increased β-catenin expression and nuclear translocation. Transduction of cells with GSK-3β S9A, a nonphosphorylatable, constitutively active mutant that favors β-catenin degradation, blocked TGF-β1-induced myofibroblastic differentiation. Furthermore, transduction of MSCs with α-Ncatenin, a truncation mutant that cannot be phosphorylated on the NH2 terminus by GSK-3β and is not degraded, was sufficient for myofibroblastic differentiation. In vivo, hyperoxic exposure of neonatal mice increases expression of β-catenin in α-smooth muscle actin-positive myofibroblasts. Similar changes were found in lungs of infants with BPD. Finally, low-passage unstimulated MSCs from infants developing BPD showed higher phospho-GSK-3β, β-catenin, and α-actin content compared with MSCs from infants not developing this disease, and phospho-GSK-3β and β-catenin each correlated with α-actin content. We conclude that phospho-GSK-3β/β-catenin signaling regulates α-smooth muscle actin expression, a marker of myofibroblast differentiation, in vitro and in vivo. This pathway appears to be activated in lung mesenchymal cells from patients with BPD. © 2012 the American Physiological Society.http://deepblue.lib.umich.edu/bitstream/2027.42/191158/2/Glycogen synthase kinase-3β_β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation - PMC.pdfPublished versionDescription of Glycogen synthase kinase-3β_β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation - PMC.pdf : Published versio
TRAF1 regulates recruitment of lymphocytes and, to a lesser extent, neutrophils, myeloid dendritic cells and monocytes to the lung airways following lipopolysaccharide inhalation
Inhaled lipopolysaccharide (LPS) induces an inflammatory response that may contribute to the pathogenesis of asthma and other airway diseases. Here we investigate the role of tumour necrosis factor (TNF) receptor-associated factor 1 (TRAF1) in leucocyte recruitment using a model of LPS-induced lung inflammation in mice. TRAF1–/– mice are completely deficient in the recruitment of lymphocytes to the lower respiratory tract after inhalation of LPS. Although TRAF1–/– mice display normal early accumulation of neutrophils, dendritic cells and monocytes in the alveolar airspace, they have a significantly reduced recruitment of these cells by 24 hr after inhalation of LPS when compared to wild-type (WT) mice. Despite normal expression of the pro-inflammatory cytokines TNF, interleukin-1 (IL-1) and IL-6 after LPS treatment, TRAF1–/– mice displayed decreased expression of intercellular adhesion molecule 1, vascular cell adhesion molecule 1, CCL17 and CCL20 in the lungs, when compared to LPS-treated WT mice. These results suggest that TRAF1 facilitates LPS-induced leucocyte recruitment into the lung airways by augmenting the expression of chemokines and adhesion molecules. Mice lacking TNF receptor 1 (TNFR1) but not TNFR2 show a phenotype similar to the TRAF1–/– mice, suggesting that TRAF1 may act downstream of TNFR1. Significantly, we use bone marrow chimeras to demonstrate that expression of TRAF1 by cells resident in the lungs, but not by circulating leucocytes, is necessary for efficient LPS-induced recruitment of leucocytes to the lung airways
- …