57 research outputs found

    Special Issue on Cutting-Edge Technologies for Renewable Energy Production and Storage

    Get PDF
    Anthropogenic greenhouse gas emissions are dramatically influencing the environment, and research is strongly committed in proposing alternatives, mainly based on renewable energy sources [...

    Challenges and opportunities of process modelling renewable advanced fuels

    Get PDF
    The Paris COP21 held on December 2015 represented a step forward global GHG emission reduction: this led to intensify research efforts in renewables, including biofuels and bioliquids. However, addressing sustainable biofuels and bioliquid routes and value chains which can limit or reverse the ILUC (indirect land-use change effect) is of paramount importance. Given this background condition, the present study targets the analysis and modelling a new integrated biomass conversion pathway to produce renewable advanced fuels, enabling the issue of indirect land-use change (ILUC) of biofuels to be tackled. The bioenergy chain under investigation integrates the decentralized production of biogas through anaerobic digestion and its upgrading to biomethane, followed by a centralized conversion to liquid transport fuels, involving methane reforming into syngas, Fischer–Tropsch (FT) synthesis, and methanol synthesis. The methodology adopted in this work stem from extensive literature review of suitable bio/thermo-chemical conversion technologies and their process modelling using a commercial flow-diagram simulation software is carried out. The major significance of the study is to understand the different modelling approaches, to allow the estimation of process yields and mass/energy balances: in such a way, this work aims at providing guidance to process modellers targeting qualitative and quantitative assessments of biomass to biofuels process routes. Beyond FT products, additional process pathways have been also explored, such as MeOH synthesis from captured CO2 and direct methane to methanol synthesis (DMTM). The analysis demonstrated that it is possible to model such innovative integrated processes through the selected simulation tool. However, research is still needed as regards the DMTM process, where studies about modelling this route through the same tool have not been yet identified in the literature

    Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports

    Get PDF
    The freight sector is expected to keep, or even increase, its fundamental role for the major modern economies, and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment, it can be implemented in different ways: besides full electric-battery powertrains, electricity can be used to supply catenary roads, or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach, which results in zero emissions for all direct uses of electricity, a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article, we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels, eLNG, eDiesel, and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings, and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential, considerations of the need for new infrastructures, and the technological maturity of some options, are fundamental to compare the different technologies. In this paper, an assessment of such technological and non-technological barriers has been conducted, in order to compare alternative pathways for the heavy-duty sector. Among the available options, the flexibility of using drop-in, energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally, the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies, which would otherwise be wasted due to grid limitations

    Biomass Carbonization: Process Options and Economics for Small Scale Forestry Farms☆

    Get PDF
    Abstract Bioenergy represents a unique opportunity for forestry companies to diversify the sources of income and create new stable business opportunities: a large number of initiatives has started in the last decades especially regarding decentralized power generation; nevertheless the conversion of the farmers to energy producers is not a trivial issue. The present work has focused on a possible alternative to biopower generation for forestry farms: the biomass carbonization (i.e. biomass slow pyrolysis). Charcoal making presents good prerequisite conditions for successful biomass based systems in the forestry sector: the system results incentive-independent, the power generation represents the co-product of a different primary production (resulting a real additional income), the plant capital cost is affordable for small scale farmers, operations requires technical skills normally available in the forestry sector and the reliability of the system is proven and credible, reducing the risks contained in business plans based on "number of hours of operation over several years". Moreover charcoal is a well known product, familiar to forestry companies for a very long time, the market is well defined, the technology is known but still offers opportunities for further improvements (in terms of efficiency, costs and environmental impacts), the technology does not present major risk, the investment is well suited to small farmers and the process and technology gives a great opportunity for small scale and local supply chain development. Based on these considerations, the present work investigated the technological opportunities for small scale charcoal making systems. Various process configurations have been examined, focusing on advantages and disadvantages representative of each solution in view of small scale application suitable for the Italian case and a designed pilot plant has been proposed

    Bio-Hydrocarbons through Catalytic Pyrolysis of Used Cooking Oils: towards sustainable jet and road fuels

    Get PDF
    Abstract Vegetable Oil (VO) is today the most used feedstock for transport biofuel production by transesterification to biodiesel. Other commercial technologies for renewable fuels production are mainly based either on Fischer-Tropsch (FT) synthesis from coal, natural gas and possibly biomass, or hydro treating of vegetable oil (Hydrotreated Vegetable Oil, HVO): this also includes Hydrotreated Renewable Jet fuel, HRJ, Used Cooking Oil (UCO) is a highly sustainable feedstock (based on EC-RED scheme): it is therefore considered as a possible alternative to VOs for greening of air transport and, under proper circumstances, for reducing the feedstock cost component. However, the use of UCO is not trivial in reactors, as catalysts are sensitive to impurities and contaminations, which are typical of waste oils. Moreover, the chemical composition of UCO is variable regionally as well as seasonally, because the type of base-vegetable oils vary with Country and period of the year. In the framework of the ITAKA EU FP7 project, (catalytic) thermochemical conversion of UCO has been considered to obtain an intermediate biofuel suitable for upgrading by hydrotreating. The catalytic conversion of UCO and Fatty Acids were investigated in a 1.5 kg/h pilot unit. UCO, properly filtered and conditioned, was characterized, and then converted in bio-oil by means of thermal and catalytic reactionsunder controlled conditions. The type of catalyst and the reaction conditions, including several parameters such as temperature, reactor geometry, heating rate and residence time, were evaluated, and selected combinations were tested. The bio-oil was characterized in terms of main constituents and hydrocarbons content, and GC-MS and GC-FID analyses were used to qualitatively and quantitatively assess the composition of the fuel

    Thermochemical Conversion of Microalgae: Challenges and Opportunities

    Get PDF
    Abstract Research in Advanced Biofuels steadily developed during recent years. A number of highly innovative technologies have been explored at various scale: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved the early-commercial status, while hydrotreating of vegetable oils (HVO, or HEFA) can be considered today fully commercial. However, despite the level of innovation in each specific technological process under consideration, the feedstock maintains a central role in making a biofuel chain really sustainable. In this context, microalgae grown in salt-water and arid areas offers a considerable opportunity for advanced biofuel production: at the same time, however, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-produced product) is not trivial. So far, the main attention has been given to cultivating the microorganism, accumulating lipids, extracting the oil, valorising co-products, and treating the algae oil into biodiesel (through esterification) or HEFA (Hydrotreated Esthers and Fatty Acids), this second one representing a very high quality biofuels, almost a drop-in fuel (suitable either for road transport or for aviation), which production exceed 2 Mt y-1 today. However, extracting the algae oil at low cost and at industrial scale is not yet a full industrial mature process, and the still limited market size of algae-to-biofuels makes difficult the development of industrial-scale systems. Nevertheless, another option can be considered, i.e. processing the whole algae into dedicated thermochemical reactors, thus approaching the downstream processing of algae in a completely different way from separation. The present work examines the possible routes for thermochemical conversion of microalgae, distinguishing between dry-processes (namely pyrolysis and gasification) and wet-processes (near critical water hydrothermal liquefaction and hydrothermal gasification). Typical expected elementary composition of major products is given. Main peculiarities of batch versus continuous processing are also discussed from an engineering point of view. Major engineering advantages and challenges in thermochemically conversion of algae are identified and discussed, in view of the production of a transport biofuel. Finally, future perspectives for each route are given in terms of current and expected technological readiness level

    Tracking the Biogenic Component of Lower-Carbon Intensive, Co-Processed Fuels—An Overview of Existing Approaches

    Get PDF
    Several methods are currently used to track the bio-component of co-processed fuels including energy/mass balance, yield methods and radiocarbon techniques. The methods used to track or estimate the bio-component of fuels produced when bio and fossil feedstocks are processed together (co-processed) in oil refineries were analysed in detail, together with their advantages and disadvantages. Some methods, such as radiocarbon methods that allow the direct measurement of the bio-content in a fuel, have been criticised due to low accuracy at low blends. However, these reservations have tended to misinterpret the options available for carbon dating and to discount recent improvements in these tests. As much higher co-pressing mixtures are anticipated if published national decarbonisation targets are to be achieved, any challenges at very low co-processing ratios affecting the accuracy of the radiocarbon methods should not be an issue. Energy/mass balance and yield methods might be supplemented with carbon-tracking to determine the real the biogenic content

    Decarbonization potential of on-road fuels and powertrains in the European Union and the United States: a well-to-wheels assessment

    Get PDF
    Transportation is fundamental for any modern economy, but its growing energy demand and the related climate impact call for urgent action. Life-cycle analysis (LCA) is a suitable approach to assessing the greenhouse gas (GHG) performance and decarbonization potential of transportation fuels and vehicle powertrains. Here, we assessed well-to-wheels (WTW) GHG emission reductions for a wide set of light-duty vehicle fuel and powertrain technologies used in the European Union (EU) and the United States (U.S.) for their decarbonization potential. We focused on the similarities and differences of the results and the underlying methodologies and data of the two analyses. We evaluated the decarbonization potential of new fuel–vehicle systems in Europe and the United States in comparison to the baseline petroleum gasoline and diesel vehicles in each market. For the transportation fuels examined in both regions, waste-to-fuel technologies and drop-in renewable diesel fuels (biofuels) produced from residues offer the biggest opportunities for reducing per-energy-unit GHG emissions, but may be limited in scale-up potentials given feedstock availabilities, qualities, and logistics challenges. The potential benefits of electricity and hydrogen as fuels span a wide range, determined by the primary energy source and the potential deployment of carbon capture and sequestration technologies. From a tank-to-wheels perspective, electric powertrains, with higher energy efficiency than internal combustion engines, provide incontrovertible evidence of GHG savings. For vehicle–fuel combined systems, the per km WTW results from GREET are generally higher than the JEC estimates, owing to greater vehicle fuel consumption attributable to larger vehicle sizes and more aggressive driving cycles in the U.S. This paper highlights key drivers of WTW fuel–vehicle system GHG emissions as well as opportunities and limitations to decarbonize light-duty transportation in Europe and the United States with promising alternative fuel production and vehicle powertrain technologies. Results show that major solutions in both regions are aligned, despite certain differences in the methodologies and results of the WTW analyses. As well as informing optimal selection of fuel and powertrain technologies for future vehicles, these findings are also useful in informing how existing vehicles can best be decarbonized through the use of renewable fuels and advanced powertrain technologies
    • …
    corecore