118 research outputs found

    Special Issue on Cutting-Edge Technologies for Renewable Energy Production and Storage

    Get PDF
    Anthropogenic greenhouse gas emissions are dramatically influencing the environment, and research is strongly committed in proposing alternatives, mainly based on renewable energy sources [...

    Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives

    Get PDF
    Hydrogen is considered as one of the pillars of the European decarbonisation strategy, boosting a novel concept of the energy system in line with the EU's commitment to achieve clean energy transition and reach the European Green Deal carbon neutrality goals by 2050. Hydrogen from biomass sources can significantly contribute to integrate the renewable hydrogen supply through electrolysis at large-scale production. Specifically, it can cover the non-continuous production of green hydrogen coming from solar and wind energy, to offer an alternative solution to such industrial sectors necessitating of stable supply. Biomass-derived hydrogen can be produced either from thermochemical pathways (i.e., pyrolysis, liquefaction, and gasification) or from biological routes (i.e., direct or indirect-biophotolysis, biological water–gas shift reaction, photo- and dark-fermentation). The paper reviews several production pathways to produce hydrogen from biomass or biomass-derived sources (biogas, liquid bio-intermediates, sugars) and provides an exhaustive review of the most promising technologies towards commercialisation. While some pathways are still at low technology readiness level, others such as the steam bio-methane reforming and biomass gasification are ready for an immediate market uptake. The various production pathways are evaluated in terms of energy and environmental performances, highlighting the limits and barriers of the available LCA studies. The paper shows that hydrogen production technologies from biomass appears today to be an interesting option, almost ready to constitute a complementing option to electrolysis

    Quantification of the carbon intensity of electricity produced and used in Europe

    Get PDF
    The EU has a comprehensive legislation to facilitate the energy transition towards a low carbon energy system and achieve the EU's Paris Agreement commitments for reducing greenhouse gas emissions. The European Green Deal is an integral part of the EU strategy for a sustainable and climate neutral economy by 2050. The decarbonisation of the power generation is essential to achieve the goal of decarbonising the energy and transport sectors. This paper presents a study conducted to quantify the carbon emissions associated to the production of electricity produced and used in European countries, based on a comprehensive methodology developed for this purpose. A spreadsheet model has been developed that considers the various sources for electricity generation, the type of plants, conversion efficiencies, upstream emissions and emissions from power plant construction, as well as the electricity trade. The results show the greenhouse gas emissions from the production and use of electricity in all European countries, revealing significant variations between countries. The carbon intensity of electricity shows a clear reduction trend since 1990, for most of the European countries. In the European Union, carbon intensity of electricity used at low voltage degreased from 641 gCO2eq/kWh in 1990 to 334 gCO2eq/kWh in 2019, and this trend is expected to continue in the coming years

    What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector

    Get PDF
    Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs. Competitiveness issues, against standard starch based ethanol, are evident considering many commercial scale cellulosic ethanol plants appear to be currently in idle or on-hold states

    Challenges and opportunities of process modelling renewable advanced fuels

    Get PDF
    The Paris COP21 held on December 2015 represented a step forward global GHG emission reduction: this led to intensify research efforts in renewables, including biofuels and bioliquids. However, addressing sustainable biofuels and bioliquid routes and value chains which can limit or reverse the ILUC (indirect land-use change effect) is of paramount importance. Given this background condition, the present study targets the analysis and modelling a new integrated biomass conversion pathway to produce renewable advanced fuels, enabling the issue of indirect land-use change (ILUC) of biofuels to be tackled. The bioenergy chain under investigation integrates the decentralized production of biogas through anaerobic digestion and its upgrading to biomethane, followed by a centralized conversion to liquid transport fuels, involving methane reforming into syngas, Fischer–Tropsch (FT) synthesis, and methanol synthesis. The methodology adopted in this work stem from extensive literature review of suitable bio/thermo-chemical conversion technologies and their process modelling using a commercial flow-diagram simulation software is carried out. The major significance of the study is to understand the different modelling approaches, to allow the estimation of process yields and mass/energy balances: in such a way, this work aims at providing guidance to process modellers targeting qualitative and quantitative assessments of biomass to biofuels process routes. Beyond FT products, additional process pathways have been also explored, such as MeOH synthesis from captured CO2 and direct methane to methanol synthesis (DMTM). The analysis demonstrated that it is possible to model such innovative integrated processes through the selected simulation tool. However, research is still needed as regards the DMTM process, where studies about modelling this route through the same tool have not been yet identified in the literature

    The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy

    Get PDF
    This paper aims at evaluating the best allocation of potential biomethane generation for the decarbonization of the transport system, presenting a case study in Italy. The country has some peculiar features, such as several operating biogas plants, additional potential feedstock for biogas/biomethane generation, a well-developed natural gas network and established relevant natural gas uses in different final sectors, including transport. Based on current estimates for sustainable biomethane potential by 2030, ranging from 2.3 to 7.6 billion cubic meters depending on the scenario, the analysis compares technologies for the generation, distribution and final use of biomethane. The results of the analysis confirm the potential interesting contribution of biomethane in decarbonizing the Italian transport system: a billion cubic meters of biomethane can lead to 2.33–4.37 MtCO2e savings, depending on the feedstock mix and the application. On a national basis, annual climate emission savings in 2030 range from 10.0 to 26.7 MtCO2e, depending on the scenario. Additional 3.1–8.1 MtCO2e of emissions can be avoided if the CO2 captured during the biomethane upgrading can be stored or reused. The proposed methodology could be used to extend the analysis to other countries, and to the European context

    Biomethane as alternative fuel for the EU road sector: analysis of existing and planned infrastructure

    Get PDF
    The views expressed here are purely those of the authors and may not, under any circumstances, be regarded as an official position of the European Commission

    Potential and limiting factors in the use of alternative fuels in the European maritime sector

    Get PDF
    The maritime sector is a key asset for the world economy, but its environmental impact represents a major concern. The sector is primarily supplied with Heavy Fuel Oil, which results in high pollutant emissions. The sector has set targets for deacrbonisation, and alternative fuels have been identified as a short-to medium-term option. The paper addresses the complexity related to the activities of the maritime industry, and discusses the possible contribution of alternative fuels. A sector segmentation is proposed to define the consumption of each sub-segment, so to compare it with the current alternative fuel availability at European level. The paper shows that costs and GHG savings are fundamental enablers for the uptake of alternative fuels, but other aspects are also crucial: technical maturity, safety regulation, expertise needed, etc. The demand for alternative fuels has to be supported by an existing, reliable infrastructure, and this is not yet the case for many solutions (i.e. electricity, hydrogen or methanol). Various options are already available for maritime sector, but the future mix of fuels used will depend on technology improvements, availability, costs and the real potential for GHG emissions reduction.(c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports

    Get PDF
    The freight sector is expected to keep, or even increase, its fundamental role for the major modern economies, and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment, it can be implemented in different ways: besides full electric-battery powertrains, electricity can be used to supply catenary roads, or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach, which results in zero emissions for all direct uses of electricity, a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article, we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels, eLNG, eDiesel, and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings, and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential, considerations of the need for new infrastructures, and the technological maturity of some options, are fundamental to compare the different technologies. In this paper, an assessment of such technological and non-technological barriers has been conducted, in order to compare alternative pathways for the heavy-duty sector. Among the available options, the flexibility of using drop-in, energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally, the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies, which would otherwise be wasted due to grid limitations

    Bio-Hydrocarbons through Catalytic Pyrolysis of Used Cooking Oils: towards sustainable jet and road fuels

    Get PDF
    Vegetable Oil (VO) is today the most used feedstock for transport biofuel production by transesterification to biodiesel. Other commercial technologies for renewable fuels production are mainly based either on Fischer-Tropsch (FT) synthesis from coal, natural gas and possibly biomass, or hydro treating of vegetable oil (Hydrotreated Vegetable Oil, HVO): this also includes Hydrotreated Renewable Jet fuel, HRJ, Used Cooking Oil (UCO) is a highly sustainable feedstock (based on EC-RED scheme): it is therefore considered as a possible alternative to VOs for greening of air transport and, under proper circumstances, for reducing the feedstock cost component. However, the use of UCO is not trivial in reactors, as catalysts are sensitive to impurities and contaminations, which are typical of waste oils. Moreover, the chemical composition of UCO is variable regionally as well as seasonally, because the type of base-vegetable oils vary with Country and period of the year. In the framework of the ITAKA EU FP7 project, (catalytic) thermochemical conversion of UCO has been considered to obtain an intermediate biofuel suitable for upgrading by hydrotreating. The catalytic conversion of UCO and Fatty Acids were investigated in a 1.5 kg/h pilot unit. UCO, properly filtered and conditioned, was characterized, and then converted in bio-oil by means of thermal and catalytic reactionsunder controlled conditions. The type of catalyst and the reaction conditions, including several parameters such as temperature, reactor geometry, heating rate and residence time, were evaluated, and selected combinations were tested. The bio-oil was characterized in terms of main constituents and hydrocarbons content, and GC-MS and GC-FID analyses were used to qualitatively and quantitatively assess the composition of the fuel
    • …
    corecore