566 research outputs found

    Acidophilous grasslands in the Locarnese region (Southern Switzerland): description and classification of main plant communities

    Get PDF
    This paper presents a phytosociological study of dry and mesophilous meadows and pastures in the Locarnese region (Insubria - Southern Switzerland). Seventy-one vegetation relevés were analysed using both hierarchical classification and nonmetric multidimensional scaling (NMDS) ordination. Seven main clusters were identified and described as follows: (i) xerophytic grasslands on sandy soil dominated by Koeleria macrantha; (ii) mesophilous meadows with Arrhenatherum elatius and Centaurea transalpina; (iii) semi-dry meadows with Chrysopogon gryllus; (iv) semi-dry grasslands with Carex fritschii and Thalictrum minus; (v) nutrient-poor Phyteuma betonicifolium-Festuca nigrescens montane zone grasslands; Nardus stricta grasslands dominated by (vi) Festuca paniculata or (vii) Carex pilulifera. From a phytosociological point of view, a new association named Phyteumo betonicifolii-Festucetum nigrescentis, classified into the Nardo strictae-Agrostion tenuis alliance was proposed. In addition, we confirmed the presence of the Holco-Chrysopogonetum grylli association, within the Bromion erecti, which up to now was provisional only

    Three-dimensional MRI assessment of regional wall stress after acute myocardial infarction predicts postdischarge cardiac events

    Get PDF
    PURPOSE: To determine the prognostic significance of systolic wall stress (SWS) after reperfused acute myocardial infarction (AMI) using MRI. MATERIALS AND METHODS: A total of 105 patients underwent MRI 7.8 +/- 4.2 days after AMI reperfusion. SWS was calculated by using a three-dimensional (3D) MRI approach to left ventricular (LV) wall thickness and to the radius of curvature. Between hospital discharge and the end of follow-up, an average of 4.1 +/- 1.7 years after AMI, 19 patients experienced a major cardiac event, including cardiac death, nonfatal reinfarction or heart failure (18.3%). RESULTS: The results were mainly driven by heart failure outcome. In univariate analysis the following factors were predictive of postdischarge major adverse cardiac events: 1) at the time of AMI: higher heart rate, previous calcium antagonist treatment, in-hospital congestive heart failure, proximal left anterior descending artery (LAD) occlusion, a lower ejection fraction, higher maximal ST segment elevation before reperfusion, and ST segment reduction lower than 50% after reperfusion; 2) MRI parameters: higher LV end-systolic volume, lower ejection fraction, higher global SWS, higher SWS in the infarcted area (SWS MI) and higher SWS in the remote myocardium (SWS remote). In the final multivariate model, only SWS MI (odds ratio [OR]: 1.62; 95% confidence interval [CI]: 1.01-2.60; P = 0.046) and SWS remote (OR: 2.17; 95% CI: 1.02-4.65; P = 0.046) were independent predictors. CONCLUSION: Regional SWS assessed by means of MRI a few days after AMI appears to be strong predictor of postdischarge cardiac events, identifying a subset of at risk patients who could qualify for more aggressive management

    Serial magnetic resonance imaging based assessment of the early effects of an ACE inhibitor on postinfarction left ventricular remodeling in rats

    Get PDF
    In vivo assessment of treatment efficacy on postinfarct left ventricular (LV) remodeling is crucial for experimental studies. We examined the technical feasibility of serial magnetic resonance imaging (MRI) for monitoring early postinfarct remodeling in rats. MRI studies were performed with a 7-Tesla unit, 1, 3, 8, 15, and 30 days after myocardial infarction (MI) or sham operation, to measure LV mass, volume, and the ejection fraction (EF). Three groups of animals were analyzed: sham-operated rats (n = 6), MI rats receiving lisinopril (n = 11), and MI rats receiving placebo (n = 8). LV dilation occurred on day 3 in both MI groups. LV end-systolic and end-diastolic volumes were significantly lower in lisinopril-treated rats than in placebo-treated rats at days 15 and 30. EF was lower in both MI groups than in the sham group at all time points, and did not differ between the MI groups during follow-up. Less LV hypertrophy was observed in rats receiving lisinopril than in rats receiving placebo at days 15 and 30. We found acceptable within- and between-observer agreement and an excellent correlation between MRI and ex vivo LV mass (r = 0.96; p < 0.001). We demonstrated the ability of MRI to detect the early beneficial impact of angiotensin-converting enzyme (ACE) inhibitors on LV remodeling. Accurate and noninvasive, MRI is the tool of choice to document response to treatment targeting postinfarction LV remodeling in rats

    Métabolomique et spectrométrie de masse : de nouvelles perspectives en analyse biomédicale

    Get PDF
    Metabolomics is defined as an integrative approach consisting in the comprehensive analysis of all of the small molecules of a biological system (the "metabolome"). The main objective of metabolomics in medecine is to discover metabolic biomarkers for diseases. Mass spectrometry (MS) coupled to liquid or gas chromatography is amongst major analytical tools used in metabolomics. However, the holistic approach used in metabolomics requires very good performances of the analytical system (chromatographic column and MS equipment) and the use of non-conventional validation strategies. Metabolomics workflow can be divided in three main steps: sample preparation, MS data acquisition and processing, and statistical analysis. Processing of the "raw" data (obtained after MS acquisition) is mostly required to normalise chromatographic conditions and to carry out accurate quantification of MS features. Features resulting from this processing may be identified later. The statistical analyses include typically multivariate techniques such as supervised and non-supervised methods. Supervised methods make use of the response variable (e.g., case/control) for model construction while non-supervised methods do not use this piece of information. When the study is focused on a particular set of metabolites, targeted metabolomics could be an interesting alternative to the holistic approach since it may allow absolute quantitation and be associated with a reduced cost

    The vascular phenotype in Pseudoxanthoma elasticum and related disorders: contribution of a genetic disease to the understanding of vascular calcification

    Get PDF
    Vascular calcification is a complex and dynamic process occurring in various physiological conditions such as aging and exercise or in acquired metabolic disorders like diabetes or chronic renal insufficiency. Arterial calcifications are also observed in several genetic diseases revealing the important role of unbalanced or defective anti- or pro-calcifying factors. Pseudoxanthoma elasticum (PXE) is an inherited disease (OMIM 264800) characterized by elastic fiber fragmentation and calcification in various soft conjunctive tissues including the skin, eyes, and arterial media. The PXE disease results from mutations in the ABCC6 gene, encoding an ATP-binding cassette transporter primarily expressed in the liver, kidneys suggesting that it is a prototypic metabolic soft-tissue calcifying disease of genetic origin. The clinical expression of the PXE arterial disease is characterized by an increased risk for coronary (myocardial infarction), cerebral (aneurysm and stroke), and lower limb peripheral artery disease. However, the structural and functional changes in the arterial wall induced by PXE are still unexplained. The use of a recombinant mouse model inactivated for the Abcc6 gene is an important tool for the understanding of the PXE pathophysiology although the vascular impact in this model remains limited to date. Overlapping of the PXE phenotype with other inherited calcifying diseases could bring important informations to our comprehension of the PXE disease

    Microparticle release in remote ischemic conditioning mechanism

    Get PDF
    Remote ischemic conditioning (RCond) induced by short periods of ischemia and reperfusion of an organ or tissue before myocardial reperfusion is an attractive strategy of cardioprotection in the context of acute myocardial infarction. Nonetheless, its mechanism remains unknown. A humoral factor appears to be involved, although its identity is currently unknown. We hypothesized that the circulating microparticles (MPs) are the link between the remote tissue and the heart. MPs from rats and healthy humans undergoing RCond were characterized. In rats, RCond was induced by 10 min of limb ischemia. In humans, RCond was induced by three cycles of 5-min inflation and 5-min deflation of a blood-pressure cuff. In the second part of the study, rats underwent 40 min myocardial ischemia followed by 2 h reperfusion. Infarct size was measured and compared among three groups of rats: 1) myocardial infarction alone (MI) (n = 6); 2) MI + RCond started 20 min after coronary ligation (n = 6); and 3) MI + injection of RCond-derived rat MPs (MI + MPs) (n = 5). MPs from endothelial cells (CD54(+) and CD146(+) for rats and humans, respectively) and procoagulant MPs (Annexin V(+)) markedly increased after RCond, both in rats and humans. RCond reduced infarct size (24.4 ± 5.9% in MI + RCond vs. 54.6 ± 4.7% in MI alone; P < 0.01). Infarct size did not decrease in MI + MPs compared with MI alone (50.2 ± 6.4% vs. 54.6 ± 4.7%, not significantly different). RCond increased endothelium-derived and procoagulant MPs in both rats and humans. However, MP release did not appear to be a biological vector of RCond in our model

    Relationship between ankle brachial index and arterial remodeling in pseudoxanthoma elasticum

    Get PDF
    ObjectivesPseudoxanthoma elasticum (PXE) is an inherited metabolic disease characterized by elastic fiber fragmentation and calcification in the cutaneous, ophthalmologic, and vascular tissues. Cardiovascular manifestations such as peripheral arterial disease (PAD) are frequent in PXE. Because of the changes in the elastic properties and medial calcification of the arterial wall in PXE, the impact of the arterial remodeling on the ankle brachial index (ABI), a well-established diagnostic method for the detection and follow-up of PAD, remains to be determined in this disease. Methods This was a cross-sectional, comparative, open study, which took place at the PXE Consultation Center, University Hospital of Angers. The subjects were 53 patients (mean age, 49 ± 14 years; 35 females) with PXE clinically proven on the basis of established criteria (skin changes, angioid streaks, and skin biopsy). The ABI at rest, symptoms of intermittent claudication (IC), carotid intima-media thickness (IMT), carotid-femoral pulse wave velocity (c-f PWV), compliance (CC), and β stiffness index were measured in a single-center cohort. Results Forty-five percent of the PXE patients had an ABI ≤0.90, but only one patient had an ABI >1.40. IC was found in 23% of the patients with an ABI ≤0.90. There were no significant differences between the patients with a low and normal ABI in terms of IMT (P = .566) or β stiffness index (P = .194), but differences were significant for c-f PWV (P = .010) and CC (P = .011). Adjusted multivariate linear regression for the Framingham-Laurier score showed that patients with a low ABI had less compliant carotid arteries (B = 0.318, P = .039). Conclusions PAD detected by a low ABI is very frequent in PXE, although with limited prevalence of symptomatic claudication. Unexpectedly, ABI was low in such calcifying PAD and associated with lower CC, independently of atherosclerosis risk factors. These findings demonstrate that PXE represents a unique monogenic model of PAD in which the specific arterial wall remodeling could change the diagnostic value of the ABI to detect PAD

    Minimising pain in farm animals: the 3S approach - ‘Suppress, Substitute, Soothe'

    Get PDF
    Recently, the French National Institute for Agricultural Research appointed an expert committee to review the issue of pain in food-producing farm animals. To minimise pain, the authors developed a ‘3S' approach accounting for ‘Suppress, Substitute and Soothe' by analogy with the ‘3Rs' approach of ‘Reduction, Refinement and Replacement' applied in the context of animal experimentation. Thus, when addressing the matter of pain, the following steps and solutions could be assessed, in the light of their feasibility (technical constraints, logistics and regulations), acceptability (societal and financial aspects) and availability. The first solution is to suppress any source of pain that brings no obvious advantage to the animals or the producers, as well as sources of pain for which potential benefits are largely exceeded by the negative effects. For instance, tail docking of cattle has recently been eliminated. Genetic selection on the basis of resistance criteria (as e.g. for lameness in cattle and poultry) or reduction of undesirable traits (e.g. boar taint in pigs) may also reduce painful conditions or procedures. The second solution is to substitute a technique causing pain by another less-painful method. For example, if dehorning cattle is unavoidable, it is preferable to perform it at a very young age, cauterising the horn bud. Animal management and constraint systems should be designed to reduce the risk for injury and bruising. Lastly, in situations where pain is known to be present, because of animal management procedures such as dehorning or castration, or because of pathology, for example lameness, systemic or local pharmacological treatments should be used to soothe pain. These treatments should take into account the duration of pain, which, in the case of some management procedures or diseases, may persist for longer periods. The administration of pain medication may require the intervention of veterinarians, but exemptions exist where breeders are allowed to use local anaesthesia (e.g. castration and dehorning in Switzerland). Extension of such exemptions, national or European legislation on pain management, or the introduction of animal welfare codes by retailers into their meat products may help further developments. In addition, veterinarians and farmers should be given the necessary tools and information to take into account animal pain in their management decision

    Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning.

    Get PDF
    Remote ischemic preconditioning (RIPC) has emerged as a feasible and attractive therapeutic procedure for heart protection against ischemia/reperfusion (I/R) injury. However, its molecular mechanisms remain poorly understood. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia. This study\u27s aim was to test whether RIPC-induced cardioprotection requires HIF-1α upregulation to be effective. In the first study, wild-type mice and mice heterozygous for HIF1a (gene encoding the HIF-1α protein) were subjected to RIPC immediately before myocardial infarction (MI). RIPC resulted in a robust HIF-1α activation in the limb and acute cardioprotection in wild-type mice. RIPC-induced cardioprotection was preserved in heterozygous mice, despite the low HIF-1α expression in their limbs. In the second study, the role of HIF-1α in RIPC was evaluated using cadmium (Cd), a pharmacological HIF-1α inhibitor. Rats were subjected to MI (MI group) or to RIPC immediately prior to MI (R-MI group). Cd was injected 18 0min before RIPC (Cd-R-MI group). RIPC induced robust HIF-1α activation in rat limbs and significantly reduced infarct size (IS). Despite Cd\u27s inhibition of HIF-1α activation, RIPC-induced cardioprotection was preserved in the Cd-R-MI group. RIPC applied immediately prior to MI increased HIF-1α expression and attenuated IS in rats and wild-type mice. However, RIPC-induced cardioprotection was preserved in partially HIF1a-deficient mice and in rats pretreated with Cd. When considered together, these results suggest that HIF-1α upregulation is unnecessary in acute RIPC
    corecore