12 research outputs found

    Vagus nerve stimulation paired with mobility training in chronic ischemic stroke: a case report

    Get PDF
    Objective The purpose of this case report is to describe pairing vagus nerve stimulation (VNS) with mobility training in an individual after stroke. Methods A 53-year-old man with left hemiparesis 14.2 months after an ischemic stroke participated in a pilot study investigating the safety and feasibility of VNS paired with upper limb rehabilitation. In addition to upper limb impairment, the participant had impaired gait and wanted to improve his mobility. A single-subject design investigation of VNS paired with self-directed mobility training was conducted. Following the conclusion of the pilot study, the participant was instructed to complete daily sessions of self-activated VNS paired with walking or stationary biking. The 10-Meter Walk Test and timed distance (6-Minute Walk Test) were assessed at 4 baseline points and at 3 to 41 months after mobility training. Results The participant had stable baseline values and was classified as a household ambulator with a quad cane. After VNS-paired mobility training, statistically significant improvements were observed in all measures, with the greatest improvements at 9 months exceeding the minimal detectable change: self-selected gait speed from 0.34 (standard deviation [SD] = 0.01) to 0.60 meters/second, fast gait speed from 0.37 (SD = 0.03) to 0.79 meters/second, and 6-Minute Walk Test distance from 106.91 (SD = 6.38) to 179.83 meters. The participant reported increased confidence and balance when walking. No falls or adverse events were reported. Conclusion The participant demonstrated improved gait speed and timed distance after VNS-paired mobility training. Randomized, blinded trials are needed to determine treatment efficacy. Impact This is the first documented case of VNS-paired mobility training in an individual with chronic poststroke gait impairments. VNS paired with mobility training may improve poststroke gait impairments

    Research Priorities in Limb and Task-Specific Dystonias

    Get PDF
    Dystonia, which causes intermittent or sustained abnormal postures and movements, can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in either the upper or lower limbs and may be task-specific causing abnormal motor performance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, be associated with parkinsonian disorders. The true prevalence of focal limb dystonia is not known and is likely currently underestimated, leaving a knowledge gap and an opportunity for future research. The pathophysiology of focal limb dystonia shares some commonalities with other dystonias with a loss of inhibition in the central nervous system and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional imaging studies revealed abnormalities in several anatomical networks that involve the cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing cause from effect in both physiology and imaging studies to permit focus on most relevant biological correlates of dystonia. There is no specific therapy for the treatment of limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is often applied to focal limb and task-specific dystonia. Various rehabilitation techniques have been applied and rehabilitation interventions may improve outcomes, but small sample size and lack of direct comparisons between methods to evaluate comparative efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have been explored in small studies with design limitations that do not yet clearly provide direction for larger clinical trials that could support new clinical therapies. Given these gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified priorities for future research including: the development of diagnostic criteria for limb dystonia, more precise phenotypic characterization and innovative clinical trial design that considers clinical heterogeneity, and limited available number of participants

    Vagus nerve stimulation paired with rehabilitation for upper limb motor impairment and function after chronic ischemic stroke: subgroup analysis of the randomized, blinded, pivotal, VNS-REHAB device trial

    Get PDF
    Background: Vagus Nerve Stimulation (VNS) paired with rehabilitation improved upper extremity impairment and function in a recent pivotal, randomized, triple-blind, sham-controlled trial in people with chronic arm weakness after stroke. Objective: We aimed to determine whether treatment effects varied across candidate subgroups, such as younger age or less injury. Methods: Participants were randomized to receive rehabilitation paired with active VNS or rehabilitation paired with sham stimulation (Control). The primary outcome was the change in impairment measured by the Fugl–Meyer Assessment Upper Extremity (FMA-UE) score on the first day after completion of 6-weeks in-clinic therapy. We explored the effect of VNS treatment by sex, age (≄62 years), time from stroke (>2 years), severity (baseline FMA-UE score >34), paretic side of body, country of enrollment (USA vs UK) and presence of cortical involvement of the index infarction. We assessed whether there was any interaction with treatment. Findings: The primary outcome increased by 5.0 points (SD 4.4) in the VNS group and by 2.4 points (SD 3.8) in the Control group (P = .001, between group difference 2.6, 95% CI 1.03-4.2). The between group difference was similar across all subgroups and there were no significant treatment interactions. There was no important difference in rates of adverse events across subgroups. Conclusion: The response was similar across subgroups examined. The findings suggest that the effects of paired VNS observed in the VNS-REHAB trial are likely to be consistent in wide range of stroke survivors with moderate to severe upper extremity impairment

    A functional magnetic resonance imaging study of head movements in cervical dystonia

    No full text
    Cervical dystonia (CD) is a neurological disorder characterized by abnormal movements and postures of the head. The brain regions responsible for these abnormal movements are not well understood, because most imaging techniques for assessing regional brain activity cannot be used when the head is moving. Recently, we mapped brain activation in healthy individuals using functional magnetic resonance imaging (fMRI) during isometric head rotation, when muscle contractions occur without actual head movements. In the current study, we used the same methods to explore the neural substrates for head movements in subjects with CD who had predominantly rotational abnormalities (torticollis). Isometric wrist extension was examined for comparison. Electromyography of neck and hand muscles ensured compliance with tasks during scanning, and any head motion was measured and corrected. Data were analyzed in three steps. First, we conducted within-group analyses to examine task-related activation patterns separately in subjects with CD and in healthy controls. Next, we directly compared task-related activation patterns between participants with CD and controls. Finally, considering that the abnormal head movements in CD occur in a consistently patterned direction for each individual, we conducted exploratory analyses that involved normalizing data according to the direction of rotational CD. The between-group comparisons failed to reveal any significant differences, but the normalization procedure in subjects with CD revealed that isometric head rotation in the direction of dystonic head rotation was associated with more activation in the ipsilateral anterior cerebellum, whereas isometric head rotation in the opposite direction was associated with more activity in sensorimotor cortex. These findings suggest that the cerebellum contributes to abnormal head rotation in CD, whereas regions in the cerebral cortex are involved in opposing the involuntary movements

    Vagus nerve stimulation paired with upper-limb rehabilitation after stroke: one-year follow-up

    No full text
    Background. Vagus nerve stimulation (VNS) paired with rehabilitation may improve upper-limb impairment and function after ischemic stroke. Objective. To report 1-year safety, feasibility, adherence, and outcome data from a home exercise program paired with VNS using long-term follow-up data from a randomized double-blind study of rehabilitation therapy paired with Active VNS (n = 8) or Control VNS (n = 9). Methods. All people were implanted with a VNS device and underwent 6 weeks in clinic therapy with Control or Active VNS followed by home exercises through day 90. Thereafter, participants and investigators were unblinded. The Control VNS group then received 6 weeks in-clinic Active VNS (Cross-VNS group). All participants then performed an individualized home exercise program with self-administered Active VNS. Data from this phase are reported here. Outcome measures were Fugl-Meyer Assessment—Upper Extremity (FMA-UE), Wolf Motor Function Test (Functional and Time), Box and Block Test, Nine-Hole Peg Test, Stroke Impact Scale, and Motor Activity Log. Results. There were no VNS treatment–related serious adverse events during the long-term therapy. Two participants discontinued prior to receiving the full crossover VNS. On average, participants performed 200 ± 63 home therapy sessions, representing device use on 57.4% of home exercise days available for each participant. Pooled analysis revealed that 1 year after randomization, the FMA-UE score increased by 9.2 points (95% CI = 4.7 to 13.7; P = .001; n = 15). Other functional measures were also improved at 1 year. Conclusions. VNS combined with rehabilitation is feasible, with good long-term adherence, and may improve arm function after ischemic stroke

    Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial

    No full text
    Background: Long-term loss of arm function after ischaemic stroke is common and might be improved by vagus nerve stimulation paired with rehabilitation. We aimed to determine whether this strategy is a safe and effective treatment for improving arm function after stroke. Methods: In this pivotal, randomised, triple-blind, sham-controlled trial, done in 19 stroke rehabilitation services in the UK and the USA, participants with moderate-to-severe arm weakness, at least 9 months after ischaemic stroke, were randomly assigned (1:1) to either rehabilitation paired with active vagus nerve stimulation (VNS group) or rehabilitation paired with sham stimulation (control group). Randomisation was done by ResearchPoint Global (Austin, TX, USA) using SAS PROC PLAN (SAS Institute Software, Cary, NC, USA), with stratification by region (USA vs UK), age (≀30 years vs >30 years), and baseline Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (20–35 vs 36–50). Participants, outcomes assessors, and treating therapists were masked to group assignment. All participants were implanted with a vagus nerve stimulation device. The VNS group received 0·8 mA, 100 ÎŒs, 30 Hz stimulation pulses, lasting 0·5 s. The control group received 0 mA pulses. Participants received 6 weeks of in-clinic therapy (three times per week; total of 18 sessions) followed by a home exercise programme. The primary outcome was the change in impairment measured by the FMA-UE score on the first day after completion of in-clinic therapy. FMA-UE response rates were also assessed at 90 days after in-clinic therapy (secondary endpoint). All analyses were by intention to treat. This trial is registered at ClinicalTrials.gov, NCT03131960. Findings: Between Oct 2, 2017, and Sept 12, 2019, 108 participants were randomly assigned to treatment (53 to the VNS group and 55 to the control group). 106 completed the study (one patient for each group did not complete the study). On the first day after completion of in-clinic therapy, the mean FMA-UE score increased by 5·0 points (SD 4·4) in the VNS group and by 2·4 points (3·8) in the control group (between group difference 2·6, 95% CI 1·0–4·2, p=0·0014). 90 days after in-clinic therapy, a clinically meaningful response on the FMA-UE score was achieved in 23 (47%) of 53 patients in the VNS group versus 13 (24%) of 55 patients in the control group (between group difference 24%, 6–41; p=0·0098). There was one serious adverse event related to surgery (vocal cord paresis) in the control group. Interpretation: Vagus nerve stimulation paired with rehabilitation is a novel potential treatment option for people with long-term moderate-to-severe arm impairment after ischaemic stroke
    corecore