34 research outputs found

    Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL

    Get PDF
    Here, we provide evidence for a detrimental role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in neural death in T cell-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Clinical severity and neuronal apoptosis in brainstem motor areas were substantially reduced upon brain-specific blockade of TRAIL after induction of EAE through adoptive transfer of encephalitogenic T cells. Furthermore, TRAIL-deficient myelin-specific lymphocytes showed reduced encephalitogenicity when transferred to wild-type mice. Conversely, intracerebral delivery of TRAIL to animals with EAE increased clinical deficits, while naive mice were not susceptible to TRAIL. Using organotypic slice cultures as a model for living brain tissue, we found that neurons were susceptible to TRAIL-mediated injury induced by encephalitogenic T cells. Thus, in addition to its known immunoregulatory effects, the death ligand TRAIL contributes to neural damage in the inflamed brain

    Divergent Modulation of Neuronal Differentiation by Caspase-2 and -9

    Get PDF
    Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    MAPK3 deficiency drives autoimmunity via dendritic cell arming

    No full text
    Dendritic cells (DC) are professional antigen-presenting cells that instruct T cells during the inflammatory course of EAE. We have previously shown that mitogen-activated protein kinase 3 ( MAPK3 or Erk1) is important for the induction of T cell anergy. Our goal was to determine the influence of MAPK3 on the capacity of DC to arm T cell responses in autoimmunity. We report that DC from Mapk3(-/-) mice have a significantly higher membrane expression of CD86 and MHC-II and - when loaded with the myelin oligodendrocyte glycoprotein (MOG) - show a superior capacity to prime naïve T cells towards an inflammatory phenotype than Mapk3(+/+)DC. Nonetheless and as previously described, Mapk3(-/-) mice were only slightly but not significantly more susceptible to MOG-induced EAE than wildtype littermate mice. However, Mapk3(+/+) mice engrafted with Mapk3(-/-) bone marrow (KOWT) developed a severe form of EAE, in direct contrast to WTKO mice, which were even less sick than control WTWT mice. An infiltration of DC and accumulation of Th17 cells was also observed in the CNS of KOWT mice. Therefore triggering of MAPK3 in the periphery might be a therapeutic option for the treatment of neuroinflammation since absence of this kinase in the immune system leads to severe EAE

    Sirtuin 1 regulation of developmental genes during differentiation of stem cells

    Get PDF
    The longevity-promoting NAD+–dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a molecular pathway that involves the RNA-binding protein HuR and the arginine methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). SIRT1 down-regulation leads to reactivation of key developmental genes such as the neuroretinal morphogenesis effectors DLL4, TBX3, and PAX6, which are epigenetically repressed by this histone deacetylase in pluripotent human embryonic stem cells. Our results indicate that SIRT1 is regulated during stem cell differentiation in the context of a yet-unknown epigenetic pathway that controls specific developmental genes in embryonic stem cells
    corecore