419 research outputs found

    New Dynamic Spin Rig Capabilities Used to Determine Rotating Blade Dynamics

    Get PDF
    The Dynamic Spin Rig Facility at the NASA Glenn Research Center is used to determine the structural response of rotating engine components without the effects of aerodynamic loading. Recently, this rig's capabilities were enhanced through the replacement of grease-lubricated ball bearings with magnetic bearings. Magnetic bearings offer a number of advantages--the most important here being that they not only fully support the rotor system, but excite it as well. Three magnetic bearings support the rotor and provide five axes of controlled motion: an x- and y-axis translation at each of two radial bearings and a z-axis translation in the vertical or axial direction. Sinusoidal excitation (most commonly used) can be imparted on the rotor through the radial magnetic bearings in either a fixed or rotating frame of reference. This excitation is added directly to the magnetic bearing control output. Since the rotor is fully levitated, large translations and rotations of the rotor system can be achieved. Some of the capabilities of this excitation system were determined and reported. The accelerations obtained at the tip of a titanium flat plate test article versus the swept sine excitation sent to both radial bearings in phase and perpendicular to the plane containing the two blades are shown. Recent tests required the excitation of fundamental bending and torsional blade resonances at rotor speeds up to 10,000 rpm. Successful fixed synchronous rotation of the excitation signal provided the best detectable blade resonant vibrations at excitation frequencies up to 1100 Hz for the particular blades of interest. A noncontacting laser measurement system was used to collect blade-tip motions. From these data, the amplitude and frequency of the motion could be determined as well as the blade damping properties. Damping could be determined using two methods: (1) free decay and (2) curve fitting the vibration amplitude as a function of frequency in and around the resonance of interest and using the half-power method. The free decay of a composite blade vibrating at its first bending resonance while rotating at 3000 rp is shown. This new system is currently being used to support the Efficient Low-Noise Fan project at Glenn. The damping properties of prototype hollow composite blades specially designed to reduce fan noise are currently being determined

    Magnetic Suspension Being Developed for Future Lube-Free Turbomachinery Application

    Get PDF
    The NASA Glenn Research Center, the U.S. Army, Texas A&M University, and other industrial partners are continuing to work together to develop magnetic suspension technology to withstand the harsh environmental conditions inside current and future turbomachinery. In fiscal year 2002, our third-generation radial magnetic bearing successfully controlled rotor motion while at 1000 F (540 C) and 20 000 rpm. The ability to command the rotor s position while spinning at this speed was also demonstrated. Future work is planned to include radial bearing tests to 1100 F (593 C) and 30 000 rpm. In fiscal year 2003, we plan to test a high-temperature thrust bearing

    Preference for Wheat Straw by Lambs Conditioned with Intraruminal Infusions of Starch

    Get PDF
    We hypothesized that feed preference depends on the interplay between flavour and postingestive effects, and we tested two predictions based on this hypothesis: (1) lambs acquire preferences for poorly nutritious feeds paired with starch; and (2) preferences persist when starch is no longer administered. Twenty lambs were randomly allocated to two groups and conditioned as follows: on odd-numbered days, lambs in group 1 received onion-flavoured wheat straw and lambs in group 2 received oregano-flavoured wheat straw. On even-numbered days, the flavours were switched and starch (2.5-9.4% of the digestible energy received/d) was infused into the rumen of all animals during straw consumption. Four periods of 8 d of conditioning were performed and on the 9th day of each period all animals were offered a choice between onion- and oregano-flavoured straw. After conditioning, starch administration was suspended and lambs were offered onion- and oregano-flavoured straw at weekly intervals for 8 weeks (extinction). Lambs strongly preferred the flavoured straw paired with starch, and this preference persisted during extinction. Thus, these results suggest that the postingestive effects of energy play an important role in the development of feed preferences of ruminants

    Self-Medication and Homeostatic Behaviour in Herbivores: Learning about the Benefits of Nature’s Pharmacy

    Get PDF
    Traditional production systems have viewed animals as homogeneous ‘machines’ whose nutritional and medicinal needs must be provided in a prescribed manner. This view arose from the lack of belief in the wisdom of the body to meet its physiological needs. Is it possible for herbivores to select diets that meet their needs for nutrients and to write their own prescriptions? Our research suggests it is. Herbivores adapt to the variability of the external environment and to their changing internal needs not only by generating homeostatic physiological responses, but also by operating in the external environment. Under this view, food selection is interpreted as the quest for substances in the external environment that provide homeostatic utility to the internal environment. Most natural landscapes are diverse mixes of plant species that are literally nutrition centres and pharmacies with vast arrays of primary (nutrient) and secondary (pharmaceutical) compounds vital in the nutrition and health of plants and herbivores. Plant-derived alkaloids, terpenes, sesquiterpene lactones and phenolics can benefit herbivores by, for instance, combating internal parasites, controlling populations of fungi and bacteria, and enhancing nutrition. Regrettably, the simplification of agricultural systems to accommodate inexpensive, rapid livestock production, coupled with a view of secondary compounds as toxins, has resulted in selecting for a biochemical balance in forages favouring primary (mainly energy) and nearly eliminating secondary compounds. There is a global need to create a more sustainable agriculture, with less dependence on external finite resources, such as fossil fuels and their environmentally detrimental derivatives. Self-medication has the potential to facilitate the design of sustainable grazing systems to improve the quality of land as well as the health and welfare of animals. Understanding foraging as the dynamic quest to achieve homeostasis will lead to implementing management programs where herbivores have access not only to diverse and nutritious foods but also to arrays of medicinal plants

    Is Doping of Cognitive Performance an Anti‐Herbivore Adaptation? Alkaloids Inhibiting Acetylcholinesterase as a Case

    Get PDF
    Historically, people who study interactions between plants and herbivores focused on the ecological costs and benefits of synthesizing secondary metabolites. These compounds have diverse functions including defenses against herbivores. Some plants produce alkaloids that act as acetylcholinesterase inhibitors, increasing both the level and duration of action of the neurotransmitter acetylcholine with potential toxic effects in insects and mammals. Yet, among a number of neuroactive plant chemicals, alkaloids that inhibit acetylcholinesterase (AIA) display nootropic activities, that is, positively affect cognition, learning, and memory in mammals. This creates a paradox: Neuroactive AIA, expected to punish herbivores, enhance cognition, learning, and memory. A prevailing view is AIA are pesticides that adversely affecting the nervous systems of herbivorous insects, and the positive influences in mammals are merely a by‐product of other functions. We review literature on the behavioral ecology of diet choice, food‐aversion learning, and neurophysiological actions of AIA in mammals to provide a more comprehensive view of the adaptive significance of AIA. These compounds act as anti‐herbivory defenses that influence flavor (taste plus odor) preference/aversion, the formation of memories, and the feeding behavior of mammalian herbivores. Thus, what appears from an insect standpoint to be an enigma makes sense for mammals: AIA enable mammalian herbivores to quickly learn and remember specific plant(s) and the locations where they ate those plant(s). We provide examples of AIA, synthesized by over 200 plant species in 16 families, which affect learning and memory in mammals. Using 36 examples of acetylcholinesterase inhibitors synthesized by plants in 58 families, we also show that acetylcholinesterase blockers contribute to anti‐herbivore chemical defense by affecting food‐aversion learning and memory in mammalian herbivores. We provide an evolutionary rationale for why natural selection may favor synthesis of chemicals that positively affect mental functions of herbivores. Our hypothesis, which challenges the current view that plant chemical defenses are aimed solely at destabilizing herbivore physiology, facilitates a broader understanding of diet preferences and feeding behavior in mammalian herbivores

    Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements

    Get PDF
    Experiments to determine the effects of turbomachinery fan blade damping concepts such as passively shunted piezoelectric materials on blade response are ongoing at the NASA Glenn Research Center. A vertical rotor is suspended and excited with active magnetic bearings (AMBs) usually in a vacuum chamber to eliminate aerodynamic forces. Electromagnetic rotor excitation is superimposed onto rotor PD-controlled support and can be fixed to either a stationary or rotating frame of reference. The rotor speed is controlled with an air turbine system. Blade vibrations are measured using optical probes as part of a Non-Contacting Stress Measurement System (NSMS). Damping is calculated from these measurements. It can be difficult to get accurate damping measurements using this experimental setup and some of the details of how to obtain quality results are seemingly nontrivial. The intent of this paper is to present those details

    Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry

    Get PDF
    A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate's 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans

    Does Experience With Sagebrush in Utero and Early in Life Influence Use of Sagebrush by sheep?

    Get PDF
    Learning from mother begins early in the developmental process and can have lifelong effects when it comes to foraging behavior. Pregnancy is not just an incubation period but a starting point for animal well-being and disease later in life. A better understanding of the effects that early exposure to unpalatable feeds impinges on their use later in life may help create management plans that utilize grazing animals to their full potential as landscape manipulators. Thus, the objective of this research was to explore how experience in utero and early in life with sagebrush (Artemesia tridentata spp. tridentata) -a terpenoid-containing shrub- affected intake of and preference for sagebrush by sheep later in life. Eighty pregnant ewes (8 weeks of gestation) were divided into two groups, one group was exposed to sagebrush in their pens (25 to 30 Kg of freshly cut sagebrush was offered during 2-3 times a week), whereas the other group did not receive such exposure. Subsequently, lambs with their mothers were separated into four groups according to prior and subsequent exposure to sagebrush: 1) no exposure, 2) exposure in utero, 3) exposure in utero and for the first 2 mo. of life, and 4) exposure for the first 2 mo of life. At approximately 8 weeks of age, all lambs were weaned and four months later they were tested for their ability to ingest sagebrush. No differences regarding intake of sagebrush were detected among groups of lambs when they had choices between ad libitum amounts of alfalfa pellets and sagebrush (P \u3e 0.10). When the amounts of alfalfa pellets in the choice test were restricted to 50% of ad libitum intake, lambs in the group that only had in utero experience with sagebrush (Group 2) showed the lowest intakes of sagebrush (P \u3c 0.05). This suggests that in utero exposure to sagebrush decreased sagebrush preference and/or the ability of lambs to ingest this shrub. Sagebrush intake also increased across testing (P \u3c 0.05), suggesting that exposure to sagebrush during testing had a more pronounced effect on sagebrush intake than in utero or early life experiences with the shrub. In conclusion, prior experience with sagebrush under the conditions of the present study did not reveal an enhancement in sagebrush use later in life by sheep; on the contrary, in utero experiences with the shrub appeared to have reduced the ability of lambs to ingest sagebrush. Results from this study also suggest that exposing young lambs for several days to sagebrush while restricting the availability of high-quality forage is a viable option that may enhance utilization of sagebrush

    Terpenes and Carbohydrate Source Influence Rumen Fermentation, Digestibility, Intake, and Preference in Sheep

    Get PDF
    We hypothesized that toxins and nutrients in foods interact to influence foraging behavior by herbivores. Based on this hypothesis we predicted that 1) terpenes in big sagebrush (Artemisia tridentata) influence intake and preference in sheep for diets varying in sources of nonstructural (barley grain) and structural (sugar beet pulp) carbohydrates, and 2) these effects are due to the differential effects of terpenes on fermentation products and apparent digestibility of each class of carbohydrates. Lambs were fed 2 isoenergetic and isonitrogenous diets with varying proportions of the same ingredients (beet pulp- and barley grain-based diet) or offered a choice between the 2 diets; all feeds were fed without and with terpenes, in consecutive periods. We also compared intake and preference of the beet pulp- and barley-based diets before and after the lambs ate a meal of sagebrush. Finally, we assessed the effect of terpenes on ruminal variables and in vivo digestibility. Lambs ate less when fed beet pulp or when they were offered a choice of diets with terpenes (P \u3c 0.001), and intake of the beet pulp-based diet was the most affected (P \u3c 0.05). Lambs preferred the beet pulp- to the grain-based diet with terpenes, but their preference reversed when terpenes were removed from the diets (P \u3c 0.05). When lambs were offered both diets, intake and preference did not differ (P \u3e 0.20) before eating sagebrush, but they preferred the beet pulp-based diet after eating sagebrush (P \u3c 0.05). Intake of sagebrush did not differ among groups consuming the test diets (P = 0.21). Addition of terpenes to both diets increased the digestibility of DM, NDF, and ADF and decreased concentrations of total VFA and acetate (P \u3c 0.05). Terpenes also depressed butyrate concentration in the barley-based diet (P \u3c 0.05). Propionate concentrations were not affected by terpenes in either feed (P = 0.63). In summary, the predominant type of feed ingredient (beet pulp, grain) ingested with terpenes influenced fermentation products, intake, and preference in lambs. The source of energy from supplements, or other plants in the diet, is likely to influence intake and preference for sagebrush in sheep foraging on rangelands. Moreover, ingesting terpenes from sagebrush may also influence intake and preference for other plant species or supplements

    The Value of Native Plants and Local Production in an Era of Global Agriculture

    Get PDF
    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study—the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our synthesis is to support more local food production using native plants in an ecologically sustainable manner
    corecore