1,193 research outputs found

    Fast Mesh Refinement in Pseudospectral Optimal Control

    Get PDF
    Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy --- simply increase the order NN of the Lagrange interpolating polynomial and the mathematics of convergence automates the distribution of the grid points. Unfortunately, as NN increases, the condition number of the resulting linear algebra increases as N2N^2; hence, spectral efficiency and accuracy are lost in practice. In this paper, we advance Birkhoff interpolation concepts over an arbitrary grid to generate well-conditioned PS optimal control discretizations. We show that the condition number increases only as N\sqrt{N} in general, but is independent of NN for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as NN increases. The effectiveness of the resulting fast mesh refinement strategy is demonstrated by using \underline{polynomials of over a thousandth order} to solve a low-thrust, long-duration orbit transfer problem.Comment: 27 pages, 12 figures, JGCD April 201

    What are the Marital Problems of Happy Couples? A Multimethod, Two‐Sample Investigation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162758/2/famp12483.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162758/1/famp12483_am.pd

    Gain of Function Analysis Reveals Non-Redundant Roles for the Yersinia pestis Type III Secretion System Effectors YopJ, YopT, and YpkA [preprint]

    Get PDF
    Virulence of Yersinia pestis in mammals requires the type III secretion system, which delivers seven effector proteins into the cytoplasm of host cells to undermine immune responses. All seven of these effectors are conserved across Y. pestis strains, but three -- YopJ, YopT, and YpkA -- are apparently dispensable for virulence. Some degree of functional redundancy between effector proteins would explain both observations. Here, we use a combinatorial genetic approach to define the minimal subset of effectors required for full virulence in mice following subcutaneous infection. We found that a Y. pestis strain lacking YopJ, YopT, and YpkA is attenuated for virulence in mice, and that addition of any one of these effectors to this strain increases lethality significantly. YopJ, YopT, and YpkA likely contribute to virulence via distinct mechanisms. YopJ is uniquely able to cause macrophage cell death in vitro and to suppress accumulation of inflammatory cells to foci of bacterial growth in deep tissue, whereas YopT and YpkA cannot. The synthetic phenotypes that emerge when YopJ, YopT, and YpkA are removed in combination provide evidence that each enhances Y. pestis virulence, and that YopT and YpkA act through a mechanism distinct from that of YopJ

    Separation and identification of dominant mechanisms in double photoionization

    Full text link
    Double photoionization by a single photon is often discussed in terms of two contributing mechanisms, {\it knock-out} (two-step-one) and {\it shake-off} with the latter being a pure quantum effect. It is shown that a quasi-classical description of knock-out and a simple quantum calculation of shake-off provides a clear separation of the mechanisms and facilitates their calculation considerably. The relevance of each mechanism at different photon energies is quantified for helium. Photoionization ratios, integral and singly differential cross sections obtained by us are in excellent agreement with benchmark experimental data and recent theoretical results.Comment: 4 pages, 5 figure

    Both Reintroduction and Recolonization Likely Contributed to the Re-establishment of a Fisher Population in East-central Alberta

    Get PDF
    Recently, Stewart et al. (2017) investigated the origins of contemporary fisher populations in the Cooking Lake Moraine (CLM) of east-central Alberta, Canada, where fishers (Pekania pennanti) from Ontario and Manitoba, Canada were reintroduced in the early 1990s. To address this objective, Stewart et al. (2017) compared microsatellite alleles from extant fisher populations in the CLM to those from Ontario, Manitoba, and other Alberta populations. They reported that the CLM population clustered with adjacent native Alberta populations, consistent with recolonization, but also that 2 of 109 microsatellite alleles in the CLM occurred only in the source populations from Ontario and Manitoba. Rather than allowing for the possibility that these alleles descended from reintroduced fishers, the authors speculated that they represented random mutations among fishers that recolonized the area naturally from nearby populations in Alberta, and concluded that the reintroduction had failed completely. We disagree with this conclusion for 2 reasons. We contend it is more likely that the 2 alleles represent a genetic signature from the individuals released during the reintroduction, rather than being the result of mutations. We further suggest that, irrespective of the genetic legacy of introduced fishers in the recovered population, the presence of reintroduced fishers in the CLM may have helped facilitate natural recolonization of the area by fishers from surrounding areas. In our view, Stewart et al.’s (2017) findings do not demonstrate conclusively that the reintroduction program failed; on the contrary, we argue that their findings indicate that reintroduced fishers likely contributed to the long-term persistence of fishers in the CLM. The uncertainty surrounding this case underscores the importance of genetic monitoring following reintroductions.https://digitalcommons.snc.edu/faculty_staff_works/1032/thumbnail.jp
    corecore