574 research outputs found

    How large is the gap between present and efficient transport prices in Europe?

    Get PDF
    In this paper we analyse the gap between present transport prices and efficient transport prices. Efficient transport prices are those prices that maximise economic welfare, including external costs (congestion, air pollution, accidents). The methodology is applied to six urban and interregional case studies using one common optimal pricing model. The case studies cover passenger as well as freight transport and cover all modes. We find that prices need to be raised most for peak urban passenger car transport and to a lesser extent for interregional road transport. Optimal pricing results for public transport are more mixed. We show that current external costs on congested roads are a bad guide for optimal taxes and tolls: the optimal toll that takes into account the reaction of demand is often less than one third of the present marginal external cost.transport pricing; external costs; social costs; congestion pricing

    Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats

    Get PDF
    We provide the reader with relevant data related to our recently published paper, comparing two mathematical models to describe prolactin turnover in rats following one or two doses of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride, “A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats” (Taneja et al., 2016) [1]. All information is tabulated. Summary level data on the in vitro potencies and the physicochemical properties is presented in Table 1. Model parameters required to explore the precursor pool model are presented in Table 2. In Table 3, estimated parameter comparisons for both models are presented, when separate potencies are estimated for risperidone and paliperidone, as compared to a common potency for both drugs. In Table 4, parameter estimates are compared when the drug effect is parameterized in terms of drug concentration or receptor occupancy

    [18F]FDG and [18F]FLT uptake in human breast cancer cells in relation to the effects of chemotherapy: an in vitro study

    Get PDF
    Increased 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) uptake is the most commonly used marker for positron emission tomography in oncology. However, a proliferation tracer such as 3′-deoxy-3′-[18F]fluorothymidine (FLT) might be more specific for cancer. 3′-deoxy-3′-[18F]fluorothymidine uptake is dependent on thymidine kinase 1 (TK) activity, but the effects of chemotherapeutic agents are unknown. The aim of this study was to characterise FDG and FLT uptake mechanisms in vitro before and after exposure to chemotherapeutic agents. The effects of 5-fluorouracil (5-FU), doxorubicin and paclitaxel on FDG and FLT uptake were measured in MDA MB231 human breast cancer cells in relation to cell cycle distribution, expression and enzyme activity of TK-1. At IC50 concentrations, 5-FU resulted in accumulation in the G1 phase, but doxorubicin and paclitaxel induced a G2/M accumulation. Compared with untreated cells, 5-FU and doxorubicin increased TK-1 levels by >300. At 72 h, 5-FU decreased FDG uptake by 50% and FLT uptake by 54%, whereas doxorubicin increased FDG and FLT uptake by 71 and 173%, respectively. Paclitaxel increased FDG uptake with >100% after 48 h, whereas FLT uptake hardly changed. In conclusion, various chemotherapeutic agents, commonly used in the treatment of breast cancer, have different effects on the time course of uptake of both FDG and FLT in vitro. This might have implications for interpretation of clinical findings

    Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities

    Get PDF
    Kras-driven non–small-cell lung cancers (NSCLCs) are a leading cause of death with limited therapeutic options. Many NSCLCs exhibit high levels of Ezh2, the enzymatic subunit of polycomb repressive complex 2 (PRC2). We tested Ezh2 inhibitors as single agents or before chemotherapy in mice with orthotopic Kras-driven NSCLC grafts, which homogeneously express Ezh2. These tumors display sensitivity to EZH2 inhibition by GSK126 but also amplify an inflammatory program involving signaling through NF-κB and genes residing in PRC2-regulated chromatin. During this process, tumor cells overcome GSK126 antiproliferative effects. We identified oncogenes that may mediate progression through an in vivo RNAi screen aimed at targets of PRC2/NF-κB. An in vitro compound screening linked GSK126-driven inflammation and therapeutic vulnerability in human cells to regulation of RNA synthesis and proteostasis. Interestingly, GSK126-treated NSCLCs in vivo also showed an enhanced response to a combination of nimesulide and bortezomib. Thus, Ezh2 inhibition may restrict cell proliferation and promote defined adaptive responses. Targeting these responses potentially improves outcomes in Kras-driven NSCLCs

    The COOH-Terminal Peptide of Platelet Factor-4 Variant (CXCL4L1/PF-4var47-70) Strongly Inhibits Angiogenesis and Suppresses B16 Melanoma Growth In vivo.

    Get PDF
    Chemokines influence tumor growth directly or indirectly via both angiogenesis and tumor-leukocyte interactions. Platelet factor-4 (CXCL4/PF-4), which is released from alpha-granules of activated platelets, is the first described angiostatic chemokine. Recently, it was found that the variant of CXCL4/PF-4 (CXCL4L1/PF-4var) could exert a more pronounced angiostatic and antitumoral effect than CXCL4/PF-4. However, the molecular mechanisms of the angiostatic activities of the PF-4 forms remain partially elusive. Here, we studied the biological properties of the chemically synthesized COOH-terminal peptides of CXCL4/PF-4 (CXCL4/PF-4(47-70)) and CXCL4L1/PF-4var (CXCL4L1/PF-4var(47-70)). Both PF-4 peptides lacked monocyte and lymphocyte chemotactic activity but equally well inhibited (25 nmol/L) endothelial cell motility and proliferation in the presence of a single stimulus (i.e., exogenous recombinant fibroblast growth factor-2). In contrast, when assayed in more complex angiogenesis test systems characterized by the presence of multiple mediators, including in vitro wound-healing (2.5 nmol/L versus 12.5 nmol/L), Matrigel (60 nmol/L versus 300 nmol/L), and chorioallantoic membrane assays, CXCL4L1/PF-4var(47-70) was found to be significantly (5-fold) more angiostatic than CXCL4/PF-4(47-70). In addition, low (7 mug total) doses of intratumoral CXCL4L1/PF-4var(47-70) inhibited B16 melanoma growth in mice more extensively than CXCL4/PF-4(47-70). This antitumoral activity was predominantly mediated through inhibition of angiogenesis (without affecting blood vessel stability) and induction of apoptosis, as evidenced by immunohistochemical and fluorescent staining of B16 tumor tissue. In conclusion, CXCL4L1/PF-4var(47-70) is a potent antitumoral and antiangiogenic peptide. These results may represent the basis for the design of CXCL4L1/PF-4var COOH-terminal-derived peptidomimetic anticancer drugs. Mol Cancer Res; 8(3); 322-34

    Facilitating and motivating factors for reporting reprehensible conduct in care: A study among nurse practitioners and physician assistants in the Netherlands

    Get PDF
    Rationale, aims and objectives The aims of this study are as follows: (a) to establish whether a relationship exists between the importance that healthcare professionals attach to ethics in care and their likelihood to report reprehensible conduct committed by colleagues, and (b) to assess whether this relationship is moderated by behavioural control targeted at preventing harm. Method In this cross-sectional study, which was based on a convenience sample (n = 155) of nurse practitioners (NPs) and physician assistants (PAs) in the Netherlands, we measured ethics advocacy (EA) as a motivating factor (reflecting the importance that healthcare professionals attach to ethics and care) and "behavioral control targeted at preventing harm" (BCPH) as a facilitating factor. "Reporting reprehensible conduct" (RRC) was measured as a context-specific indicator of whistleblowing intentions, consisting of two vignettes describing morally questionable behaviour committed by colleagues. Results The propensity to report reprehensible conduct was a function of the interaction between EA and BCPH. The only group for which EA predicted RRC consisted of individuals with above-average levels of perceived BCPH. Conclusion The results suggest that the importance that healthcare professionals attach to ethical aspects in care is not sufficient to ensure that they will report reprehensible conduct. Such importance does not induce reporting behaviour unless the professionals also perceive themselves as having a high level of BCPH. We suggest that these insights could be helpful in training healthcare providers to cope with ethical dilemmas that they are likely to encounter in their work

    Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation

    Get PDF
    Biological functions of proteins are influenced by posttranslational modifications such as on/off switching by phosphorylation and modulation by glycosylation. Proteolytic processing regulates cytokine and chemokine activities. In this study, we report that natural posttranslational citrullination or deimination alters the biological activities of the neutrophil chemoattractant and angiogenic cytokine CXCL8/interleukin-8 (IL-8). Citrullination of arginine in position 5 was discovered on 14% of natural leukocyte-derived CXCL8(1–77), generating CXCL8(1–77)Cit5. Peptidylarginine deiminase (PAD) is known to citrullinate structural proteins, and it may initiate autoimmune diseases. PAD efficiently and site-specifically citrullinated CXCL5, CXCL8, CCL17, CCL26, but not IL-1β. In comparison with CXCL8(1–77), CXCL8(1–77)Cit5 had reduced affinity for glycosaminoglycans and induced less CXCR2-dependent calcium signaling and extracellular signal-regulated kinase 1/2 phosphorylation. In contrast to CXCL8(1–77), CXCL8(1–77)Cit5 was resistant to thrombin- or plasmin-dependent potentiation into CXCL8(6–77). Upon intraperitoneal injection, CXCL8(6–77) was a more potent inducer of neutrophil extravasation compared with CXCL8(1–77). Despite its retained chemotactic activity in vitro, CXCL8(1–77)Cit5 was unable to attract neutrophils to the peritoneum. Finally, in the rabbit cornea angiogenesis assay, the equally potent CXCL8(1–77) and CXCL8(1–77)Cit5 were less efficient angiogenic molecules than CXCL8(6–77). This study shows that PAD citrullinates the chemokine CXCL8, and thus may dampen neutrophil extravasation during acute or chronic inflammation

    An Isolated, Antegrade, Perfused, Peroneal Nerve Anterior Tibialis Muscle Model in the Rat A Novel Model Developed to Study the Factors Governing the Time Course of Action of Neuromuscular Blocking Agents

    Get PDF
    Background: A model of an antegrade, perfused, isolated rat peroneal nerve anterior tibial muscle was developed to study potentially important factors governing the time course of action of (nondepolarizing) neuromuscular blocking agents such as concentration, blood flow, and temperature. The model allows observation of the effects of selective changes in these factors. Methods: The authors isolated the anterior tibial muscle and cannulated the anterior tibial artery and vein, providing a way for single-pass perfusion with blood from a donor rat. A force transducer was connected to the tibialis anterior muscle and a stimulator was connected to the tibial nerve. The influence of intrinsic potency (EC 90 ) and muscle blood flow rate on the time course of pancuronium and rocuronium was investigated. Results: The model remained stable for at least 4 h with respect to twitch height, muscle structure and function, and blood chemistry. Doubling the muscle-blood flow resulted in a significantly faster onset and offset for both pancuronium and rocuronium. Trebling the intrinsic potency (EC 90 ) was not associated with significant changes in the time course of action of the relaxants. Conclusion: The authors developed and validated a model that allows us to study biophase kinetics of neuromuscular blocking agents in the anterior tibial muscle of the rat. In this model, muscle-blood flow rather than EC 90 appears to predominantly determine the onset and offset time of nondepolarizing muscle relaxants
    corecore