634 research outputs found

    Activation analysis of admixtures in certain semiconductive materials

    Get PDF
    The use of extractions and chromatographic operations to separate macrobases, and to divide elements into groups convenient for gamma-spectrometric analysis is discussed. Methods are described for the activation detection of some impurities in silicon, arsenic, thallium, and trichloromethylsilane, on the basis of the extraction properties of bis(2-chlorethyl ether) and dimethylbenzylalkylammonium chloride. A schematic diagram of the extraction separation of elements-admixture is presented showing the aqueous and organic phases. The content percentage of the various elements are given in tables

    Highly anisotropic energy gap in superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} from optical conductivity measurements

    Full text link
    We have measured the complex dynamical conductivity, σ=σ1+iσ2\sigma = \sigma_{1} + i\sigma_{2}, of superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} (Tc=22T_{c} = 22 K) at terahertz frequencies and temperatures 2 - 30 K. In the frequency dependence of σ1\sigma_{1} below TcT_{c}, we observe clear signatures of the superconducting energy gap opening. The temperature dependence of σ1\sigma_{1} demonstrates a pronounced coherence peak at frequencies below 15 cm1^{-1} (1.8 meV). The temperature dependence of the penetration depth, calculated from σ2\sigma_{2}, shows power-law behavior at the lowest temperatures. Analysis of the conductivity data with a two-gap model, gives the smaller isotropic s-wave gap of ΔA=3\Delta_{A} = 3 meV, while the larger gap is highly anisotropic with possible nodes and its rms amplitude is Δ0=8\Delta_{0} = 8 meV. Overall, our results are consistent with a two-band superconductor with an s±s_{\pm} gap symmetry.Comment: 6 pages, 4 figures, discussion on pair-barking scattering and possible lifting of the nodes is adde

    Compositional variation of thin PZT films near morphotropic phase boundary: experiment and simulation

    Full text link
    The work was partly supported by the Ministry for Education and Science (Russian Federation) (Grant No 16.2811.2017/4.6) and RFBR (Grant No 16-02-00632)

    Spin excitations of the correlated semiconductor FeSi probed by THz radiation

    Full text link
    By direct measurements of the complex optical conductivity σ(ν)\sigma(\nu) of FeSi we have discovered a broad absorption peak centered at frequency ν0(4.2K)32cm1\nu_{0}(4.2 K) \approx 32 cm^{-1} that develops at temperatures below 20 K. This feature is caused by spin-polaronic states formed in the middle of the gap in the electronic density of states. We observe the spin excitations between the electronic levels split by the exchange field of He=34±6TH_{e}=34\pm 6 T. Spin fluctuations are identified as the main factor determining the formation of the spin polarons and the rich magnetic phase diagram of FeSi.Comment: 5 pages, 4 figure

    Flavor Symmetry Breaking in Strongly Coupled N=1 Supersymmetric SO(N_c) Gauge Theory with N_f=N_c-2

    Full text link
    In the SO(N_c) gauge theory with N_f quarks for N_f=N_c-2, its instanton effects indicate the signal of dynamical flavor symmetry breakdown of SU(N_f) to SO(N_f), which is not described by the conventional "magnetic" degree's of freedom. It is argued that this breaking is well described by our effective superpotential consisting of "electric" quarks and gluons instead of monopoles of SO(N_c). The low-energy particles include the Nambu-Goldstone superfields associated with this breakdown. The proposed superpotential is found to exhibit the holomorphic decoupling property and the anomaly-matching property on a residual chiral U(1) symmetry.Comment: 6 pages, version to appear in Europhysics Letter
    corecore