15 research outputs found

    Independent Monitoring the Cuban Economic Zone Oil Development

    Get PDF
    The extensive impact and consequences of the 2010 Deep Water Horizon oil drilling rig failure in the Gulf of Mexico, together with expanding drilling activities in the Cuban Exclusive Economic zone, have cast a spotlight on Cuban oil development. The threat of a drilling rig failure has evolved from being only hypothetical to a potential reality with the commencement of active drilling in Cuban waters. The disastrous consequences of a drilling rig failure in Cuban waters will spread over a number of vital interests of the US and of nations in the Caribbean in the general environs of Cuba. The US fishing and tourist industries will take major blows from a significant oil spill in Cuban waters. Substantial ecological damage and damage to beaches could occur for the US, Mexico, Haiti and other countries as well. The need exists for the US to have the ability to independently monitor the reality of Cuban oceanic oil development. The advantages of having an independent US early warning system providing essential real-time data on the possible failure of a drilling rig in Cuban waters are numerous. An ideal early warning system would timely inform the US that an event has occurred or is likely to occur in, essentially, real-time. Presently operating monitoring systems that could provide early warning information are satellite-based. Such systems can indicate the locations of both drilling rigs and operational drilling platforms. The system discussed/proposed in this paper relies upon low-frequency underwater sound. The proposed system can complement existing monitoring systems, which offer ocean-surface information, by providing sub-ocean surface, near-real time, information. This “integrated system” utilizes and combines (integrates) many different forms of information, some gathered through sub-ocean surface systems, and some through electromagnetic-based remote sensing (satellites, aircraft, unmanned arial vehicles), and other methods as well. Although the proposed integrated system is in the developmental stage, it is based upon well-established technologies

    Identification and quantitation of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in human urine by 1H NMR spectroscopy. Application to five cases of intoxication

    Full text link
    Identification of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in five cases of intoxication using nuclear magnetic resonance (NMR) spectroscopy of human urine is reported. A new water suppression technique PURGE (Presaturation Utilizing Relaxation Gradients and Echoes) was used. A calibration curve was obtained using spiked samples. The method gave a linear response (correlation coefficient of 0.992) over the range 0.01–1 mg/mL. Subsequently, quantitation of the amount of MDMA present in the samples was performed. The benefit and reliability of NMR investigations of human urine for cases of intoxication with MDMA are discussed

    Spatial Distribution of Petroleum Hydrocarbons in Sediment Cores from Blind Pass, St. Pete Beach, Florida

    Get PDF
    One hundred and one sediment cores were collected to characterize the spatial distribution of petroleum hydrocarbons within and just outside Blind Pass, St. Pete Beach, Florida. Twenty-five percent of the cores exhibited levels of petroleum hydrocarbons above detection limits of the gas chromatograph/flame ionization detector (GC/FID) (0.01 mg/Kg), but at generally low concentrations. Petroleum hydrocarbon speciation studies of these samples (gas chromatography/mass spectroscopy [GC/MS]) indicate above-detection level (1 μg/Kg) petroleum hydrocarbons are similar to the non-volatile petroleum hydrocarbons found in a Bouchard 155 reference sample collected after the 1993 oil spill in the area, but are in a much degraded and weathered state. Individual petroleum hydrocarbons were, in all but one case, below the threshold effective level (TEL) described in the literature (MacDonald, 1994). The petroleum hydrocarbons were primarily found at 100-300 cm depth in Blind Pass cores. Above-detection level petroleum hydrocarbons were generally found in samples from cores in the center of the channel, near the edges of the shoal, and just outside of Blind Pass. A second mixture of hydrocarbons, primarily phthalates, ketones, and ether, was found at relatively shallow core depths (0-99 cm) in the Mid- and North End Channel cores. These suggest a separate source of contamination, possibly storm water runoff. The fuel fluorescence detector (FFD) probe was investigated for its ability to detect petroleum hydrocarbons in marine sediments. When analyzed with the FFD, all sediments from the cores produced peaks of fluorescence, but none above the background levels of Blind Pass native sediments. All but two samples analyzed by GC/FID were below the detection limits (100 ppm) of the FFD. These samples were found in dark-colored sediments. The combination of the detection limits of the instrument, sediment color, and the degraded nature of the heavier weight petroleum hydrocarbons may have resulted in fluorescence outputs below background levels. These studies demonstrate that the distribution of petroleum hydrocarbons within Blind Pass sediments is generally low and patchy. However, 25% of the cores exhibited levels above detection using GC/FID/MS. These cores could be subjected to individual speciation studies which indicate generally below TEL levels and an association of some, but not all, with the 1993 oil spill in Blind Pass. Appendix A provides photographs and tables for sediment subsamples which exhibited total petroleum hydrocarbon concentrations above detection limits, while Appendix B presents the results from fuel fluorescence detector probe analyses. A discussion of the results of the study in relation to sediment quality guidelines and soil cleanup target level guidance documents is included as Appendix C. Some preliminary results using the above techniques on core samples from the nearby John’s Pass are presented in Appendix D

    Boynton-Delray Coastal Water Quality Monitoring Program

    Get PDF
    This report discusses a sequence of six cruises in the vicinity of the Boynton-Delray (South Central) treated-wastewater plant outfall plume (26°27\u2743 N, 80°2\u2732 W), the Boynton Inlet (26°32\u2743 N, 80°2\u2730 W), and the Lake Worth Lagoon, Palm Beach County, Florida. The sampling cruises took place on June 5-6, 2007; August 28-29, 2007; October 18-19, 2007; February 14 and 18, 2008; May 19-20, 2008; and July 11-13, 2008. Water was sampled at 18 locations at the surface, middle, and near the seafloor (where there was sufficient depth) for a total of 45 samples; these samples were analyzed for a variety of nutrients and related parameters. The water sampling unit contained a conductivity-temperature-depth (CTD) instrument from which data were obtained at each sampling site. Synchronal ocean current data were measured by a nearby acoustic Doppler current profiler (ADCP) instrument. The inlet measurements were consistently lower in salinity and more acidic (lower in pH) than the coastal ocean and were warmer during the May and, especially, during the February cruises. For most analytes, viz., nitrite+nitrate (N+N), total suspended solids (TSS), chlorophyll-a, silica (Si), and total dissolved nitrogen (TDN), the lagoon concentrations were significantly higher than the coastal ocean; the inlet concentrations appeared to be consistent with lagoon water with partial mixing with the coastal ocean, as expected. Estimates of the nutrient flux to the coastal ocean were computed: approximately 1,500 kg of dissolved nitrogen (N), 2,350 kg of silicate (Si), 33 kg of orthophosphate (P), and 59 kg of ammonium (NH4) per day were delivered to the coastal ocean through the inlet. The outfall boil at South Central outfall (the smallest in volume of the six outfalls in southeast Florida) is only visible under ideal conditions. In the six cruises described in this document, the outfall boil could be found in only one cruise (August 28-29, 2007). Elevated concentrations of nutrients (N+N, P, Si, and P) at the outfall vicinity were measured, and these concentrations decreased rapidly away from the outfall for most analytes, to become undistinguished from the background within 3 km or less. Not finding the boil, however, in five of six cruises meant that the waters with the highest concentrations were probably missed. When the boil was sampled in August 2007, N+N, P, and total dissolved phosphorus (TDP) concentrations at the boil were roughly the same as from the inlet. For other analytes (chlorophyll-a, TSS, Si, and dissolved organic carbon [DOC]), the concentrations at or near the outfall were significantly less than those from the lagoon and inlet on most of the cruises. The coastal ocean appeared to be significantly impacted by the Boynton Inlet and less so from the inlet. A suggestion of a source to the south was seen in some analytes. Measurements from the Gulf Stream Reef area were the lowest in the study, and may provide “background” concentrations for this region. As expected, the coastal ocean was warmer and more stratified in the summer compared to the winter, e.g., whereas no thermocline was noted in the CTD data from February 2007, a strong thermocline was observed in most casts during July 2008. In certain cases (e.g., N+N in June 2007, pH in July 2008), an increase in the concentration (decrease for pH) from north to south implied a source from the south, e.g., the Boca Raton Inlet or Boca Raton outfall

    The State of Coral Reef Ecosystems of Southeast Florida

    Get PDF
    The northern extension of the Florida reef tract and a complex of limestone ridges run parallel to the subtropical Atlantic coastline of southeast Florida. Spanning 170 km from the northern border of Biscayne National Park (BNP) in Miami-Dade County to the St. Lucie Inlet in Martin County, the reefs and hardbottom areas in this region support a rich and diverse biological community (Figure 5.1). Nearshore reef habitats in southeast Florida include hardbottom areas, patch reefs and worm reefs (Phragmatopoma spp.) exhibiting abundant octocoral, macroalgae, stony coral and sponge assemblages. Offshore, coral reef associated biotic assemblages occur on linear Holocene Acropora palmata mid-shelf and shelf margin reefs that extend from Miami Dade County to Palm Beach County (Lighty, 1977; Figure 5.2). Anastasia Formation limestone ridges and terraces colonized by reef biota characterize the reefs from Palm Beach County to Martin County (Cooke and Mossom, 1929). The coastal region of southeast Florida is highly developed, containing one third of Florida’s population of 16 million people (U.S. Census Bureau, 2006). Many southeast Florida reefs are located just 1.5 km from this urbanized shoreline. Despite their unique position as the highest latitude reefs along the western Atlantic seaboard, the reefs of southeast Florida have only recently received limited scientific and resource management attention. Andrews et al. (2005) discussed the reefs of southeast Florida and the critical need to implement actions that fill resource knowledge gaps and address conservation and threats to reef health. This report further examines and updates the list of stressors imperiling the health of southeast Florida’s reefs, and presents information gained from new research, monitoring and management efforts to determine the extent and condition of reef resources in this distinctive region

    Farfield Tracing of a Point Source Discharge Plume in the Coastal Ocean Using Sulfur Hexafluoride

    No full text
    Pathways and dilution of a point source ocean discharge in the farfield (≈10−66 km) were measured using the deliberate tracer sulfur hexafluoride (SF6). The injection of SF6 was performed by bubbling the gas over a period of 6 days into an ocean outfall pipe discharging into the southeast Florida coastal ocean. The surface SF6 concentrations show that the discharged water flowed northward parallel to the coast with a broadening of the width of the plume to about 3 km at the farthest point sampled, 66 km from the outfall. The discharge was fully mixed throughout the water column within 13 km of the outfall terminus. In the first 20 km from the outfall, SF6surface concentrations were highly variable, while beyond this the SF6 concentrations decreased monotonically going northward. The currents were measured during the study with a bottom-mounted acoustic Doppler current profiler (ADCP) located 5.5 km from the outfall. Velocities were variable in magnitude and direction but showed a net northward flow during the 6-day study. Maximum concentrations decreased by about 200-fold per kilometer from the outfall to the northern end of the study area. The study shows that SF6 is an effective method to trace point source releases far from their origin

    Color stability and surface roughness of chitosan- and nanodiamond-modified bisacrylic resin

    No full text
    Abstract: The aim of this study is to evaluate the effect of chitosan or nanodiamond incorporation on the color stability and surface roughness of a bisacrylic resin subjected to artificial aging. Four bisacrylic resins were evaluated, namely, control, chitosan-modified material, nanodiamond-modified material, and chitosan–nanodiamond-modified material. Twenty-four specimens were prepared for each material. The surface roughness was determined using a profilometer with a cut-off of 0.25 mm. The baseline color was measured according to the CIE L*a*b* system using a reflectance spectrophotometer. After these tests, the specimens were individually immersed in cola soft drink, red wine, or distilled water (n = 8) for 28 days. After the aging, the surface roughness and final color were re-evaluated. The color stability was determined using the difference between the coordinates obtained before and after the aging process. The data on roughness and color change were evaluated using ANOVA and the Tukey test (α = 0.05). The results show that the incorporation of nanodiamonds and chitosan into a bisacrylic resin provided a better color stability to the materials (p = 0.007). The storage in red wine resulted in a higher variation in the surface roughness values, especially when only the nanodiamond was incorporated to the material (p < 0.05). The incorporation of both chitosan and nanodiamonds are promising in providing an improvement in the properties of the bisacrylic resin when they are simultaneously incorporated in the product
    corecore