383 research outputs found

    Antifouling bastadin congeners target blue mussel phenoloxidase and complex copper(II) ions

    Get PDF
    Synthetically prepared congeners of spongederived bastadin derivatives such as 5,5'-dibromohemibastadin- 1 (DBHB) that suppress the settling of barnacle larvae were identified in this study as strong inhibitors of blue mussel phenoloxidase that is involved in the firm attachment of mussels to a given substrate. The IC50 value of DBHB as the most active enzyme inhibitor encountered in this study amounts to 0.84 mu M. Inhibition of phenoloxidase by DBHB is likely due to complexation of copper(II) ions from the catalytic centre of the enzyme by the a-oxo-oxime moiety of the compound as shown here for the first time by structure activity studies and by X-ray structure determination of a copper(II) complex of DBHB.Biotechnology & Applied MicrobiologyMarine & Freshwater BiologySCI(E)EI0ARTICLE61148-11581

    The Band Excitation Method in Scanning Probe Microscopy for Rapid Mapping of Energy Dissipation on the Nanoscale

    Full text link
    Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure on dissipative behavior is a challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a novel Scanning Probe Microscopy (SPM) technique in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously rather than at a single frequency as in conventional SPMs. This band excitation (BE) SPM allows very rapid acquisition of the full frequency response at each point (i.e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q-factor of the cantilever-sample system. The BE method is demonstrated for force-distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to all ambient and liquid SPMs.Comment: 32 pages, 9 figures, accepted for publication in Nanotechnolog

    Phenanthroindolizidine Alkaloids Isolated from <em>Tylophora ovata</em> as Potent Inhibitors of Inflammation, Spheroid Growth, and Invasion of Triple-Negative Breast Cancer

    Get PDF
    \ua9 2022 by the authors. Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFÎșB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 \ub1 2.0 nM and 3.3 \ub1 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 \ub1 0.4 nM and 4.2 \ub1 1 nM). Furthermore, NFÎșB inhibition data for the additional five analogues indicate a structure–activity relationship (SAR). Mechanistically, NFÎșB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IÎșBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel\uae-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs

    Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications

    Get PDF
    The shortage of information on snow properties in high latitudes places a major limitation on permafrost and more generally climate modelling. A dedicated field program was therefore carried out to investigate snow properties and their spatial variability at a polygonal tundra permafrost site. Notably, snow samples were analysed for surface-normal thermal conductivity (Keff − z) based on X-ray microtomography. Also, the detailed snow model SNOWPACK was adapted to these Arctic conditions to enable relevant simulations of the ground thermal regime. Finally, the sensitivity of soil temperatures to snow spatial variability was analysed.Within a typical tundra snowpack composed of depth hoar overlain by wind slabs, depth hoar samples were found more conductive (Keff − z = 0.22±0.05&thinsp;W&thinsp;m−1&thinsp;K−1) than in most previously published studies, which could be explained by their high density and microstructural anisotropy. Spatial variations in the thermal properties of the snowpack were well explained by the microtopography and ground surface conditions of the polygonal tundra, which control depth hoar growth and snow accumulation. Our adaptations to SNOWPACK, phenomenologically taking into account the effects of wind compaction, basal vegetation, and water vapour flux, yielded realistic density and Keff − z profiles that greatly improved simulations of the ground thermal regime. Also, a density- and anisotropy-based parameterization for Keff − z lead to further slight improvements. Soil temperatures were found to be particularly sensitive to snow conditions during the early winter and polar night, highlighting the need for improved snow characterization and modelling over this period.</p

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Calibration of multi-layered probes with low/high magnetic moments

    Get PDF
    We present a comprehensive method for visualisation and quantification of the magnetic stray field of magnetic force microscopy (MFM) probes, applied to the particular case of custom-made multi-layered probes with controllable high/low magnetic moment states. The probes consist of two decoupled magnetic layers separated by a non-magnetic interlayer, which results in four stable magnetic states: ±ferromagnetic (FM) and ±antiferromagnetic (A-FM). Direct visualisation of the stray field surrounding the probe apex using electron holography convincingly demonstrates a striking difference in the spatial distribution and strength of the magnetic flux in FM and A-FM states. In situ MFM studies of reference samples are used to determine the probe switching fields and spatial resolution. Furthermore, quantitative values of the probe magnetic moments are obtained by determining their real space tip transfer function (RSTTF). We also map the local Hall voltage in graphene Hall nanosensors induced by the probes in different states. The measured transport properties of nanosensors and RSTTF outcomes are introduced as an input in a numerical model of Hall devices to verify the probe magnetic moments. The modelling results fully match the experimental measurements, outlining an all-inclusive method for the calibration of complex magnetic probes with a controllable low/high magnetic moment
    • 

    corecore