573 research outputs found

    Non-Emergency Medical Transportation Needs of Middle-Aged and Older Adults: A Rural-Urban Comparison in Delaware, USA.

    Get PDF
    Background: Older adults in rural areas have unique transportation barriers to accessing medical care, which include a lack of mass transit options and considerable distances to health-related services. This study contrasts non-emergency medical transportation (NEMT) service utilization patterns and associated costs for Medicaid middle-aged and older adults in rural versus urban areas. Methods: Data were analyzed from 39,194 NEMT users of LogistiCare-brokered services in Delaware residing in rural (68.3%) and urban (30.9%) areas. Multivariable logistic analyses compared trip characteristics by rurality designation. Results: Rural (37.2%) and urban (41.2%) participants used services more frequently for dialysis than for any other medical concern. Older age and personal accompaniment were more common and wheel chair use was less common for rural trips. The mean cost per trip was greater for rural users (difference of $2910 per trip), which was attributed to the greater distance per trip in rural areas. Conclusions: Among a sample who were eligible for subsidized NEMT and who utilized this service, rural trips tended to be longer and, therefore, higher in cost. Over 50% of trips were made for dialysis highlighting the need to address prevention and, potentially, health service improvements for rural dialysis patients

    Differential Expression of Novel Potential Regulators in Hematopoietic Stem Cells

    Get PDF
    The hematopoietic system is an invaluable model both for understanding basic developmental biology and for developing clinically relevant cell therapies. Using highly purified cells and rigorous microarray analysis we have compared the expression pattern of three of the most primitive hematopoietic subpopulations in adult mouse bone marrow: long-term hematopoietic stem cells (HSC), short-term HSC, and multipotent progenitors. All three populations are capable of differentiating into a spectrum of mature blood cells, but differ in their self-renewal and proliferative capacity. We identified numerous novel potential regulators of HSC self-renewal and proliferation that were differentially expressed between these closely related cell populations. Many of the differentially expressed transcripts fit into pathways and protein complexes not previously identified in HSC, providing evidence for new HSC regulatory units. Extending these observations to the protein level, we demonstrate expression of several of the corresponding proteins, which provide novel surface markers for HSC. We discuss the implications of our findings for HSC biology. In particular, our data suggest that cell–cell and cell–matrix interactions are major regulators of long-term HSC, and that HSC themselves play important roles in regulating their immediate microenvironment

    Molecular Signatures of Quiescent, Mobilized and Leukemia-Initiating Hematopoietic Stem Cells

    Get PDF
    Hematopoietic stem cells (HSC) are rare, multipotent cells capable of generating all specialized cells of the blood system. Appropriate regulation of HSC quiescence is thought to be crucial to maintain their lifelong function; however, the molecular pathways controlling stem cell quiescence remain poorly characterized. Likewise, the molecular events driving leukemogenesis remain elusive. In this study, we compare the gene expression profiles of steady-state bone marrow HSC to non-self-renewing multipotent progenitors; to HSC treated with mobilizing drugs that expand the HSC pool and induce egress from the marrow; and to leukemic HSC in a mouse model of chronic myelogenous leukemia. By intersecting the resulting lists of differentially regulated genes we identify a subset of molecules that are downregulated in all three circumstances, and thus may be particularly important for the maintenance and function of normal, quiescent HSC. These results identify potential key regulators of HSC and give insights into the clinically important processes of HSC mobilization for transplantation and leukemic development from cancer stem cells

    Defining genes: a computational framework

    Get PDF
    The precise elucidation of the gene concept has become the subject of intense discussion in light of results from several, large high-throughput surveys of transcriptomes and proteomes. In previous work, we proposed an approach for constructing gene concepts that combines genomic heritability with elements of function. Here, we introduce a definition of the gene within a computational framework of cellular interactions. The definition seeks to satisfy the practical requirements imposed by annotation, capture logical aspects of regulation, and encompass the evolutionary property of homology
    corecore