4 research outputs found

    A Sustainable Approach to a Cleaner Production of Antimicrobial and Biocompatible Protein Fibers

    Get PDF
    This study presents the production, characterization, and application of celandine (Chelidonium majus L.) extracts (aqueous, acidic, alcoholic, and ultrasound) on wool fibers and their characterization. The study aims to obtain an ecologically dyed wool support that possesses biocompatible and antimicrobial activities. The plant extracts were characterized based on pH, total polyphenol content, and berberine content. Ecologically dyed wool supports were characterized based on scanning electron microscopy, levelness index, color measurements, contact angle indirect biocompatibility, and antibacterial analysis. According to the obtained results, celandine extract can be considered a potential candidate for the sustainable dyeing and functionalization of wool fibers

    Chitosan-Based Delivery Systems Loaded with Glibenclamide and Lipoic Acid: Formulation, Characterization, and Kinetic Release Studies

    Get PDF
    Glibenclamide and lipoic acid are two drugs frequently recommended for the management of diabetes mellitus, and so, the development of a new formulation containing both substances has a great benefit in terms of efficiency and compliance, acting also as a multi-target drug system. Accordingly, the aim of this study was the formulation and physicochemicalcharacterization of new polymeric systems based on chitosan (CS) in whose matrix were encapsulated glibenclamide (Gly) and lipoic acid (LA). The polymeric systems were prepared as microparticles (CS–Gly, CS–LA, and CS–Gly–LA) through ionic gelation method, using pentasodium tripolyphosphate (TPP) as crosslinking agent. The polymeric systems obtained were characterized in terms of particle size and morphology, IR spectroscopy, entrapment efficiency and drug loading, swelling degree, and therelease of the active substances from the chitosan matrix. The polymeric systems obtained were stable systems; the presence of glibenclamide and lipoic acid into the polymer matrix were proved by IR spectroscopy. The entrapment efficiency was 94.66% for Gly and 39.68% for LA. The developed polymeric systems proved a favorable swelling degree and drug release profile, the percentage of release being 88.68% for LA and 75.17% for Gly from CS–Gly–LA systems

    Preparation, Characterization and Wound Healing Effects of New Membranes Based on Chitosan, Hyaluronic Acid and Arginine Derivatives

    No full text
    New membranes based on chitosan and chitosan-hyaluronic acid containing new arginine derivatives with thiazolidine-4-one scaffold have been prepared using the ionic cross-linking method. The presence of the arginine derivatives with thiazolidine-4-one scaffold into the polymer matrix was proved by Fourier-transform infrared spectroscopy (FT-IR). The scanning electron microscopy (SEM) revealed a micro-porous structure that is an important characteristic for the treatment of burns, favoring the exudate absorption, the rate of colonization, the cell structure, and the angiogenesis process. The developed polymeric membranes also showed good swelling degree, improved hydrophilicity, and biocompatibility in terms of surface free energy components, which supports their application for tissue regeneration. Moreover, the chitosan-arginine derivatives (CS-6h, CS-6i) and chitosan-hyaluronic acid-arginine derivative (CS-HA-6h) membranes showed good healing effects on the burn wound model induced to rats. For these membranes a complete reepithelialization was observed after 15 days of the experiment, which supports a faster healing process

    New ibuprofen derivatives with thiazolidine-4-one scaffold with improved pharmaco-toxicological profile

    No full text
    International audienceBackground Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen. Methods For evaluation the toxicity degree, cell viability assay using MTT method and acute toxicity assay on rats were applied. The carrageenan-induced paw-edema in rat was used for evaluation of the anti-inflammatory effect while for analgesic effect the tail-flick test, as thermal nociception in rats and the writhing assay, as visceral pain in mice, were used. Results The toxicological screening, in terms of cytotoxicity and toxicity degree on mice, revealed that the ibuprofen derivatives ( 4a-n ) are non-cytotoxic at 2 μg/ml. In addition, ibuprofen derivatives reduced carrageenan-induced paw edema in rats, for most of them the maximum effect was recorded at 4 h after administration which means they have medium action latency, similar to that of ibuprofen. Moreover, for compound 4d the effect was higher than that of ibuprofen, even after 24 h of administration. The analgesic effect evaluation highlighted that 4 h showed increased pain inhibition in reference to ibuprofen in thermal (tail-flick assay) and visceral (writhing assay) nociception models. Conclusions The study revealed for ibuprofen derivatives, noted as 4 m, 4 k, 4e, 4d , a good anti-inflammatory and analgesic effect and also a safer profile compared with ibuprofen. These findings could suggest the promising potential use of them in the treatment of inflammatory pain conditions
    corecore