5,938 research outputs found
Leakage predictions for Rayleigh-step, helium-purge seals
Rayleigh-step, helium purge, annular shaft seals, studied for use in liquid oxygen turbopumps, generate a hydrodynamic force that enables the seal to follow shaft perturbations. Hence, smaller clearances can be used to reduce seal leakage. FLOWCAL, a computer code developed by Mechanical Technology Incorporated, predicts gas flow rate through an annular seal with an axial pressure gradient. Analysis of a 50-mm Rayleigh-step, helium-purge, annular seal showed the flow rate increased axial pressure gradient, downstream pressure, and eccentricity ratio. Increased inlet temperature reduced leakage. Predictions made at maximum and minimum clearances (due to centrifugal and thermal growths, machining tolerances and + or - 2 percent uncertainty in the clearance measurement) placed wide boundaries on expected flow rates. The widest boundaries were set by thermal growth conditions. Predicted flow rates for a 50-mm Rayleigh-step, helium-purge, annular seal underestimated measured flow rates by three to seven times. However, the analysis did accurately predict flow rates for choked gas flow through annular seals when compared to flow rates measured in two other independent studies
Transient technique for measuring heat transfer coefficients on stator airfoils in a jet engine environment
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis
Combustor flame flashback
A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism
Low error measurement-free phase gates for qubus computation
We discuss the desired criteria for a two-qubit phase gate and present a
method for realising such a gate for quantum computation that is
measurement-free and low error. The gate is implemented between qubits via an
intermediate bus mode. We take a coherent state as the bus and use cross-Kerr
type interactions between the bus and the qubits. This new method is robust
against parameter variations and is thus low error. It fundamentally improves
on previous methods due its deterministic nature and the lack of approximations
used in the geometry of the phase rotations. This interaction is applicable
both to solid state and photonic qubit systems.Comment: 6 pages, 4 figures. Published versio
The psychometrics of student evaluations of instructors and courses at Eastern Michigan University
The study applied Classical Test Theory to the student evaluation forms for 25 departments to assess reliability. The study also applied Generalizability Theory to assess the reliability of the Psychology Department evaluation form. Regression analysis on the Psychology Department form assessed the effect of absolute expected grades on student ratings of teaching effectiveness and courses. The results show that the reliability of the 25 department forms is very high, exceeding .80 for each form. Generalizability theory indicates the Psychology Department form to be reliable for assessment of student ratings of the effectiveness of teaching but not necessarily of courses. Results suggest at least five items from five or more courses would be preferable to obtain reliable results of student ratings of teaching effectiveness. Regression analysis shows absolute expected grade did not significantly account for any variance in overall student ratings of teaching effectiveness or overall course ratings
Crew appliance concepts. Volume 4, appendix C: Modular space station appliances supporting engineering data
Data collected for the appliances considered for the space station are presented along with plotted and tabulated trade study results for each appliance. The food management, and personal hygiene data are applicable to a six-man mission of 180-days
Crew appliance concepts. Volume 2, appendix B: Shuttle orbiter appliances supporting engineering data
Technical data collected for the food management and personal hygiene appliances considered for the shuttle orbiter are presented as well as plotted and tabulated trade study results for each appliance. Food storage, food operation, galley cleanup, waste collection/transfer, body cleansing, and personal grooming were analyzed
- …