39 research outputs found

    Energy requirement for a working dynamo

    Get PDF
    There has for many years been interest in finding necessary conditions for dynamo action. These are usually expressed in terms of bounds on integrated properties of the flow. The bounds can clearly be improved when the flow structure can be taken into account. Recent research presents techniques for finding optimised dynamos (that is with the lowest dynamo threshold) subject to constraints, (e.g. with fixed mean square vorticity). It is natural to ask if such an optimum solution can exist when the mean square velocity is fixed. The aim of this note is to show that this is not the case and in fact that a steady or periodic dynamo can exist in a bounded conductor with an arbitrarily small value of the kinetic energy.This work was supported by the UK Science and Technology Facilities Council [grant number ST/L000636/1].This is the final version of the article. It first appeared from Taylor & Francis via https://doi.org/10.1080/03091929.2015.109406

    Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo

    Get PDF
    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In the past the α-effect (mean-field) concept has been used to model the solar cycle, but recent work has cast doubt on the validity of the mean-field ansatz under solar conditions. This indicates that one should seek an alternative mechanism for generating large-scale structure. One possibility is the recently proposed ‘shear dynamo’ mechanism where large-scale magnetic fields are generated in the presence of a simple shear. Further investigation of this proposition is required, however, because work has been focused on the linear regime with a uniform shear profile thus far. In this paper we report results of the extension of the original shear dynamo model into the nonlinear regime. We find that whilst large-scale structure can initially persist into the saturated regime, in several of our simulations it is destroyed via large increase in kinetic energy. This result casts doubt on the ability of the simple uniform shear dynamo mechanism to act as an alternative to the α-effect in solar conditions.This work was supported by the Science and Technology Facilities Council, grant ST/L000636/1.This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw49

    Mean flow instabilities of two-dimensional convection in strong magnetic fields

    Get PDF
    The interaction of magnetic fields with convection is of great importance in astrophysics. Two well-known aspects of the interaction are the tendency of convection cells to become narrow in the perpendicular direction when the imposed field is strong, and the occurrence of streaming instabilities involving horizontal shears. Previous studies have found that the latter instability mechanism operates only when the cells are narrow, and so we investigate the occurrence of the streaming instability for large imposed fields, when the cells are naturally narrow near onset. The basic cellular solution can be treated in the asymptotic limit as a nonlinear eigenvalue problem. In the limit of large imposed field, the instability occurs for asymptotically small Prandtl number. The determination of the stability boundary turns out to be surprisingly complicated. At leading order, the linear stability problem is the linearisation of the same nonlinear eigenvalue problem, and as a result, it is necessary to go to higher order to obtain a stability criterion. We establish that the flow can only be unstable to a horizontal mean flow if the Prandtl number is smaller than order , where B0 is the imposed magnetic field, and that the mean flow is concentrated in a horizontal jet of width in the middle of the layer. The result applies to stress-free or no-slip boundary conditions at the top and bottom of the layer

    The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field

    Get PDF
    We study the instability of a Bénard layer subject to a vertical uniform magnetic field, in which the fluid obeys the Maxwell–Cattaneo (MC) heat flux–temperature relation. We extend the work of Bissell (Proc. R. Soc. A 472, 20160649 (doi:10.1098/rspa.2016.0649)) to non-zero values of the magnetic Prandtl number pm. With non-zero pm, the order of the dispersion relation is increased, leading to considerably richer behaviour. An asymptotic analysis at large values of the Chandrasekhar number Q confirms that the MC effect becomes important when C Q1/2 is O(1), where C is the MC number. In this regime, we derive a scaled system that is independent of Q. When CQ1/2 is large, the results are consistent with those derived from the governing equations in the limit of Prandtl number p → ∞ with pm finite; here we identify a new mode of instability, which is due neither to inertial nor induction effects. In the large pm regime, we show how a transition can occur between oscillatory modes of different horizontal scale. For Q ≫ 1 and small values of p, we show that the critical Rayleigh number is non-monotonic in p provided that C > 1/6. While the analysis of this paper is performed for stress-free boundaries, it can be shown that other types of mechanical boundary conditions give the same leading-order results

    Quasi-cyclic behaviour in non-linear simulations of the shear dynamo

    Get PDF
    The solar magnetic field displays features on a wide range of length-scales including spatial and temporal coherence on scales considerably larger than the chaotic convection that generates the field. Explaining how the Sun generates and sustains such large-scale magnetic field has been a major challenge of dynamo theory for many decades. Traditionally, the ‘mean-field’ approach, utilizing the well-known α-effect, has been used to explain the generation of large-scale field from small-scale turbulence. However, with the advent of increasingly high-resolution computer simulations there is doubt as to whether the mean-field method is applicable under solar conditions. Models such as the ‘shear dynamo’ provide an alternative mechanism for the generation of large-scale field. In recent work, we showed that while coherent magnetic field was possible under kinematic conditions (where the kinetic energy is far greater than magnetic energy), the saturated state typically displayed a destruction of large-scale field and a transition to a small-scale state. In this paper, we report that the quenching of large-scale field in this way is not the only regime possible in the saturated state of this model. Across a range of simulations, we find a quasi-cyclic behaviour where a large-scale field is preserved and oscillates between two preferred length-scales. In this regime, the kinetic and magnetic energies can be of a similar order of magnitude. These results demonstrate that there is mileage in the shear dynamo as a model for the solar dynamo.This work was supported by the Science and Technology Facilities Council, grant ST/L000636/1

    Elastohydrodynamic synchronization of adjacent beating flagella

    Get PDF
    It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L\textit{L}. Yet in many biological situations d/L\textit{d/L}≪1. Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d/L\textit{d/L}≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies of this model illustrate how synchrony between a pair of filaments is achieved through the asymptotic coupling.This work was supported by Wellcome Trust Senior Investigator Award 097855MA (R.E.G. and A.I.P.) and by a Marie Curie Career Integration Grant (E.L.)

    Rapidly rotating Maxwell-Cattaneo convection

    Get PDF
    Motivated by astrophysical and geophysical applications, the classical problem of rotating Rayleigh-Bénard convection has been widely studied. Assuming a classical Fourier heat law, in which the heat flux is directly proportional to the temperature gradient, the evolution of temperature is governed by a parabolic advection-diffusion equation; this, in turn, implies an infinite speed of propagation of information. In reality, the system is rendered hyperbolic by extending the Fourier law to include an advective derivative of the flux—the Maxwell-Cattaneo (M-C) effect. Although the correction (measured by the parameter Γ , a nondimensional representation of the relaxation time) is nominally small, it represents a singular perturbation and hence can lead to significant effects when the rotation rate (measured by the Taylor number T ) is sufficiently high. In this paper, we investigate the linear stability of rotating convection, incorporating the M-C effect, concentrating on the regime of T ≫ 1 , Γ ≪ 1 . On increasing Γ for a fixed T ≫ 1 , the M-C effect first comes into play when Γ = O ( T − 1 / 3 ) . Here, as in the classical problem, the preferred mode can be either steady or oscillatory, depending on the value of the Prandtl number σ . For Γ > O ( T − 1 / 3 ) , the influence of the M-C effect is sufficiently strong that the onset of instability is always oscillatory, regardless of the value of σ . Within this regime, the dependence on σ of the critical Rayleigh number and of the scale of the preferred mode are explored through the analysis of specific distinguished limits

    A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

    Get PDF
    We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth's core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E^(1/2), where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E^(-1/2) or E^(-1)). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth's core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤10^(-5)
    corecore