145 research outputs found

    Human β3-Adrenoreceptor is Resistant to Agonist-Induced Desensitization in Renal Epithelial Cells

    Get PDF
    Background/Aims: We recently showed that the β3-adrenoreceptor (β3AR) is expressed in mouse kidney collecting ducts (CD) cells along with the type-2 vasopressin receptor (AVPR2). Interestingly, a single injection of a β3AR selective agonist promotes a potent antidiuretic effect in mice. Before considering the feasibility of chronic β3AR agonism to induce antidiuresis in vivo, we aimed to evaluate in vitro the signaling and desensitization profiles of human β3AR. Methods: Human β3AR desensitization was compared with that of human AVPR2 in cultured renal cells. Video imaging and FRET experiments were performed to dissect β3AR signaling under acute and chronic stimulation. Plasma membrane localization of β3AR, AVPR2 and AQP2 after agonist stimulation was studied by confocal microscopy. Receptors degradation was evaluated by Western blotting. Results: In renal cells acute stimulation with the selective β3AR agonist mirabegron, induced a dose-dependent increase in cAMP. Interestingly, chronic exposure to mirabegron promoted a significant increase of intracellular cAMP up to 12 hours. In addition, a slow and slight agonist-induced internalization and a delayed downregulation of β3AR was observed under chronic stimulation. Furthermore, chronic exposure to mirabegron promoted apical expression of AQP2 also up to 12 hours. Conversely, long-term stimulation of AVPR2 with dDAVP showed short-lasting receptor signaling, rapid internalization and downregulation and apical AQP2 expression for no longer than 3 h. Conclusions: Overall, we conclude that β3AR is less prone than AVPR2 to agonist-induced desensitization in renal collecting duct epithelial cells, showing sustained cAMP production, preserved membrane localization and delayed degradation after 12 hours agonist exposure. These results may be important for the potential use of chronic pharmacological stimulation of β3AR to promote antidiuresis overcoming in vivo renal concentrating defects caused by inactivating mutations of the AVPR2

    Rosiglitazone promotes AQP2 plasma membrane expression in renal cells via a Ca-dependent/cAMP-independent mechanism.

    Get PDF
    Background/Aims: Thiazolidinediones are highly beneficial in the treatment of type II diabetes. However, they are also associated with edema and increased risk of congestive heart failure. Several studies demonstrated that rosiglitazone (RGZ) increases the abundance of aquaporin-2 (AQP2) at the plasma membrane of renal cells. The aim of this study was to investigate whether RGZ might activate a transduction pathway facilitating AQP2 membrane accumulation in renal cells. Methods: We analyzed the effect of RGZ on renal AQP2 intracellular trafficking in MCD4 renal cells by confocal microscopy and apical surface biotinylation. Cytosolic Ca2+ dynamics were measured by a video-imaging approach in single cell. Transient Receptor Potential (TRP) channels expression was determined by RT-PCR. Results: We showed that in MCD4 cells, short-term exposure to RGZ dramatically increases the amount of apically expressed AQP2 independently on cAMP production, PKA activation and AQP2 phosphorylation. RGZ elicited a cytosolic Ca2+ transient due to Ca2+ influx prevented by ruthenium red, suggesting the involvement of TRP plasma membrane channels. We identified TRPV6 as the possible candidate mediating this effect. Conclusions: Taken together these results provide a possible molecular mechanism explaining the increased AQP2 membrane expression under RGZ treatment: in renal cells RGZ elicits Ca2+ transients facilitating AQP2 exposure at the apical plasma membrane, thus increasing collecting duct water permeability. Importantly, this effect suggests an unexplored application of RGZ in the treatment of pathological states characterized by impaired AQP2 trafficking at the plasma membrane

    Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells

    Get PDF
    BACKGROUND: Urinary concentrating defects and polyuria are the most important renal manifestations of hypercalcemia and the resulting hypercalciuria. In this study, we tested the hypothesis that hypercalciuria-associated polyuria in kidney collecting duct occurs through an impairment of the vasopressin-dependent aquaporin 2 (AQP2) water channel targeting to the apical membrane possibly involving calcium-sensing receptor (CaR) signaling. METHODS: AQP2-transfected collecting duct CD8 cells were used as experimental model. Quantitation of cell surface AQP2 immunoreactivity was performed using an antibody recognizing the extracellular AQP2 C loop. Intracellular cyclic adenosine monophosphate (cAMP) accumulation was measured in CD8 cells using a cAMP enzyme immunoassay kit. To study the translocation of protein kinase C (PKC), membranes or cytosol fractions from CD8 cells were subjected to Western blotting using anti-PKC isozymes antibodies. The amount of F-actin was determined by spectrofluorometric techniques. Intracellular calcium measurements were performed by spectrofluorometric analysis with Fura-2/AM. RESULTS: We demonstrated that extracellular calcium (Ca2+ o) (5 mmol/L) strongly inhibited forskolin-stimulated increase in AQP2 expression in the apical plasma membrane. At least three intracellular pathways activated by extracellular calcium were found to contribute to this effect. Firstly, the increase in cAMP levels in response to forskolin stimulation was drastically reduced in cells pretreated with Ca2+ o compared to untreated cells. Second, Ca2+ o activated PKC, known to counteract vasopressin response. Third, quantification of F-actin demonstrated that Ca2+ o caused a nearly twofold increase in F-actin content compared with basal conditions. All these effects were mimicked by a nonmembrane permeable agonist of the extracellular CaR, Gd3+. CONCLUSION: Together, these data demonstrate that extracellular calcium, possibly acting through the endogenous CaR, antagonizes forskolin-induced AQP2 translocation to the apical plasma membrane in CD8 cells. In hypercalciuria, this mechanism might blunt water reabsorption and prevent further calcium concentration, thus protecting against a potential risk of urinary calcium-containing stone formation

    The expression of Lamin A mutant R321X leads to endoplasmic reticulum stress with aberrant Ca(2+) handling

    Get PDF
    Mutations in the Lamin A/C gene (LMNA), which encodes A-type nuclear Lamins, represent the most frequent genetic cause of dilated cardiomyopathy (DCM). This study is focused on a LMNA nonsense mutation (R321X) identified in several members of an Italian family that produces a truncated protein isoform, which co-segregates with a severe form of cardiomyopathy with poor prognosis. However, no molecular mechanisms other than nonsense mediated decay of the messenger and possible haploinsufficiency were proposed to explain DCM. Aim of this study was to gain more insights into the disease-causing mechanisms induced by the expression of R321X at cellular level. We detected the expression of R321X by Western blotting from whole lysate of a mutation carrier heart biopsy. When expressed in HEK293 cells, GFP- (or mCherry)-tagged R321X mislocalized in the endoplasmic reticulum (ER) inducing the PERK-CHOP axis of the ER stress response. Of note, confocal microscopy showed phosphorylation of PERK in sections of the mutation carrier heart biopsy. ER mislocalization of mCherry-R321X also induced impaired ER Ca(2+) handling, reduced capacitative Ca(2+) entry at the plasma membrane and abnormal nuclear Ca(2+) dynamics. In addition, expression of R321X by itself increased the apoptosis rate. In conclusion, R321X is the first LMNA mutant identified to date, which mislocalizes into the ER affecting cellular homeostasis mechanisms not strictly related to nuclear functions

    Histamine treatment induces rearrangements of orthogonal arrays of particles (OAPs) in human AQP4-expressing gastric cells

    Get PDF
    To test the involvement of the water channel aquaporin (AQP)-4 in gastric acid physiology, the human gastric cell line (HGT)-1 was stably transfected with rat AQP4. AQP4 was immunolocalized to the basolateral membrane of transfected HGT-1 cells, like in native parietal cells. Expression of AQP4 in transfected cells increased the osmotic water permeability coefficient (Pf) from 2.02 ± 0.3 × 10−4 to 16.37 ± 0.5 × 10−4 cm/s at 20°C. Freeze-fracture EM showed distinct orthogonal arrays of particles (OAPs), the morphological signature of AQP4, on the plasma membrane of AQP4-expressing cells. Quantitative morphometry showed that the density of OAPs was 2.5 ± 0.3% under basal condition and decreased by 50% to 1.2 ± 0.3% after 20 min of histamine stimulation, mainly due to a significant decrease of the OAPs number. Concomitantly, Pf decreased by ∼35% in 20-min histamine-stimulated cells. Both Pf and OAPs density were not modified after 10 min of histamine exposure, time at which the maximal hormonal response is observed. Cell surface biotinylation experiments confirmed that AQP4 is internalized after 20 min of histamine exposure, which may account for the downregulation of water transport. This is the first evidence for short term rearrangement of OAPs in an established AQP4-expressing cell line

    Calcium-Sensing Receptor and Aquaporin 2 Interplay in Hypercalciuria-Associated Renal Concentrating Defect in Humans. An In Vivo and In Vitro Study

    Get PDF
    One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR–AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients

    AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney.

    Get PDF
    We screened human kidney-derived multipotent CD133+/CD24+ ARPCs for the possible expression of all 13 aquaporin isoforms cloned in humans. Interestingly, we found that ARPCs expressed both AQP5 mRNA and mature protein. This novel finding prompted us to investigate the presence of AQP5 in situ in kidney. We report here the novel finding that AQP5 is expressed in human, rat and mouse kidney at the apical membrane of type-B intercalated cells. AQP5 is expressed in the renal cortex and completely absent from the medulla. Immunocytochemical analysis using segment- and cell type-specific markers unambiguously indicated that AQP5 is expressed throughout the collecting system at the apical membrane of type-B intercalated cells, where it co-localizes with pendrin. No basolateral AQPs were detected in type-B intercalated cells, suggesting that AQP5 is unlikely to be involved in the net trans-epithelial water reabsorption occurring in the distal tubule. An intriguing hypothesis is that AQP5 may serve an osmosensor for the composition of the fluid coming from the thick ascending limb. Future studies will unravel the physiological role of AQP5 in the kidney

    Activation of the Thiazide-Sensitive Sodium-Chloride Cotransporter by Beta3-Adrenoreceptor in the Distal Convoluted Tubule

    Get PDF
    We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT

    Human Mature Adipocytes Express Albumin and This Expression Is Not Regulated by Inflammation

    Get PDF
    Aims. Our group investigated albumin gene expression in human adipocytes, its regulation by inflammation and the possible contribution of adipose tissue to albumin circulating levels. Methods. Both inflamed and healthy subjects provided adipose tissue samples. RT-PCR, Real-Time PCR, and Western Blot analysis on homogenates of adipocytes and pre-adipocytes were performed. In sixty-three healthy subjects and fifty-four micro-inflamed end stage renal disease (ESRD) patients circulating levels of albumin were measured by nephelometry; all subjects were also evaluated for body composition, calculated from bioelectrical measurements and an thropometric data. Results. A clear gene expression of albumin was showed in pre-adipocytes and, for the first time, in mature adipocytes. Albumin gene expression resulted significantly higher in pre-adipocytes than in adipocytes. No significant difference in albumin gene expression was showed between healthy controls and inflamed patients. A significant negative correlation was observed between albumin levels and fat mass in both healthy subjects and inflamed ESRD patients. Conclusions. In the present study we found first time evidence that human adipocytes express albumin. Our results also showed that systemic inflammation does not modulate albumin gene expression. The negative correlation between albumin and fat mass seems to exclude a significant contributing role of adipocyte in plasma albumin

    Role of Nuclear Lamin A/C in the Regulation of Nav1.5 Channel and Microtubules: Lesson From the Pathogenic Lamin A/C Variant Q517X

    Get PDF
    In this work, we studied an lmna nonsense mutation encoding for the C-terminally truncated Lamin A/C (LMNA) variant Q517X, which was described in patients affected by a severe arrhythmogenic cardiomyopathy with history of sudden death. We found that LMNA Q517X stably expressed in HL-1 cardiomyocytes abnormally aggregates at the nuclear envelope and within the nucleoplasm. Whole-cell patch clamp experiments showed that LMNA Q517X-expressing cardiomyocytes generated action potentials with reduced amplitude, overshoot, upstroke velocity and diastolic potential compared with LMNA WT-expressing cardiomyocytes. Moreover, the unique features of these cardiomyocytes were 1) hyper-polymerized tubulin network, 2) upregulated acetylated α-tubulin, and 3) cell surface Nav1.5 downregulation. These findings pointed the light on the role of tubulin and Nav1.5 channel in the abnormal electrical properties of LMNA Q517X-expressing cardiomyocytes. When expressed in HEK293 with Nav1.5 and its β1 subunit, LMNA Q517X reduced the peak Na+ current (INa) up to 63% with a shift toward positive potentials in the activation curve of the channel. Of note, both AP properties in cardiomyocytes and Nav1.5 kinetics in HEK293 cells were rescued in LMNA Q517X-expressing cells upon treatment with colchicine, an FDA-approved inhibitor of tubulin assembly. In conclusion, LMNA Q517X expression is associated with hyper-polymerization and hyper-acetylation of tubulin network with concomitant downregulation of Nav1.5 cell expression and activity, thus revealing 1) new mechanisms by which LMNA may regulate channels at the cell surface in cardiomyocytes and 2) new pathomechanisms and therapeutic targets in cardiac laminopathies
    corecore