70 research outputs found

    Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: a comparative study

    Get PDF
    Nowadays, a large number of polyurethane (PU) system modifications relies on the use of different bio-polyols. In this context, two bio-based polyols, one synthesized from lignin and one from rapeseed oil were evaluated in the replacement of a petrochemical polyol at an amount of 10–30 wt.% in rigid polyurethane foam formulations (RPU). The lignin-based polyol was produced by oxypropylation from an organosolv lignin (ALCELL) and the rapeseed oil-based one prepared by a two-step method of epoxidation followed by oxirane ring opening with diethylene glycol. The replacement of the petrochemical polyol with the lignin bio-polyol increased the reactivity of the reactive mixtures, while the rapeseed oil bio-polyol gave the opposite effect. This was confirmed by the respective changes observed in the dielectric polarization of the reactive mixtures together with the maximum temperature achieved in the foam core during the foaming process. The foams modified with the tested bio-polyols had both lower apparent density (40–45 kg/m3) and closed cell content (86–89%), comparatively with a reference foam. The replacement of petrochemical polyol with the bio-polyols up to 30 wt% caused, in the modified foams, a slight decrease of the compressive strength. Moreover, the introduction of the bio-polyols into PU formulations generally did not influence the thermal conductivity coefficient that was around 23 mW/m·K for the obtained materials.info:eu-repo/semantics/publishedVersio

    Rigid polyurethane foams modified with liginin based bio-polyols

    Get PDF
    Nowadays, a large number of polyurethane (PU) systems modifications relies on the use of different bio-polyols, as described in literature. Among them, one of the most important is the incorporation of bio-polyols based on plant wastes such as lignin. In this work, two bio-polyols have been synthesized from a technical lignin and applied to obtain rigid PU foams (10-30wt. in polyol premix). The lignin, obtained by an organosolv process (aqueous ethanol) proceeds from hardwoods and was converted into liquid bio-polyols by an oxypropylation process. The addition of the lignin-based bio-polyols to the PU system increased its reactivity, as confirmed by a faster decrease of the dielectric polarization and an increase of the maximum temperature in the foam core during the foaming process. The foam modified with these bio-polyols had a slightly lower apparent density and compressive strength. The obtained foams have an apparent density and a closed cell content of about 40 to 45 kg/m3 and 86-89%, respectively. The compressive strength of the foams decrease as the bio-polyol content increased. On the other hand the thermal conductivities of the obtained materials were similar ca. 23 mW/m·K. Concerning thermal stability, lignin-based foams start to degrade at lower temperatures and show a slower degradation pattern (high residue in TG).info:eu-repo/semantics/publishedVersio

    Wpływ dodatku nanokrzemionki na proces spieniania oraz właściwości elastycznych pianek poliuretanowych otrzymywanych z zastosowaniem poliolu z oleju rzepakowego

    No full text
    In this paper, the analysis of the foaming process of flexible polyurethane modified with the addition of silica nanoparticles is presented. Flexible polyurethane foams (FPURF) were obtained using petrochemical components and a rapeseed-oil-based polyol (used in an amount of 20 wt %). Nanosilica was added to the polyurethane system in the amount of 0.5, 1.0 and 1.5 php (parts per hundred polyols). The characteristic parameters of the foaming process, such as the growth velocity of foamed materials, the core temperature and dielectric polarization, were measured using a Foamat device. It was observed that polyurethane-forming reactions slowed down as an effect of the increase of nanosilica content in the polyurethane composition. Consequently, the temperature in the core of the reaction mixture containing 1.5 php nanosilica was lower by approx. 35 °C compared to the reference material. Moreover, the influence of the method of homogenization of the nanofiller with polyols on the selected properties of prepared foams was analyzed. The following properties of flexible polyurethane foams were determined: apparent density, resilience, compressive strength, hardness, hysteresis and support factor. The introduction of nanosilica filler to the polyurethane formulation caused an increase in the apparent density from 24.6 kg/m3 for the reference foam to 28.5 kg/m3 for the foam containing 1.5 php of nanosilica. However, this nanofiller did not significantly affect the cell structure of foamed materials. The foams obtained with the nanosilica additive of 1.0 php had the most preferred properties, such as a slightly higher value of resilience, lower hardness and higher support factor than the reference foam without nanosilica.Analizowano proces spieniania elastycznych poliuretanów modyfikowanych dodatkiem nanokrzemionki. Elastyczne pianki poliuretanowe (FPURF) otrzymywano z zastosowaniem poliolu pochodzenia petrochemicznego oraz poliolu wytworzonego z udziałem 20 % mas. oleju rzepakowego. Nanokrzemionka była dodawana do kompozycji poliuretanowej w ilości 0,5, 1,0 i 1,5 php [masa napełniacza (g) na 100 g mieszaniny polioli]. Charakterystyczne parametry procesu spieniania, takie jak: szybkość wzrostu pianki, temperatura wrdzeniu mieszaniny reakcyjnej oraz polaryzacja dielektryczna, mierzono za pomocą urządzenia Foamat. Zaobserwowano, że reakcje tworzenia poliuretanu ulegały spowolnieniu wraz ze wzrostem udziału masowego krzemionki w kompozycji poliuretanowej. Konsekwencją tego była niższa o ok. 35 °C temperatura w rdzeniu materiału zawierającego 1,5 php nanokrzemionki, w porównaniu z temperaturą w rdzeniu pianki referencyjnej. Określono też wpływ sposobu homogenizacji nanonapełniacza z poliolem na wybrane właściwości otrzymywanych pianek. Analizowano następujące właściwości fizyko-mechaniczne: gęstość pozorną, odbojność, wytrzymałość na ściskanie, twardość, histerezę i współczynnik komfortu. Dodatek krzemionki do kompozycji poliuretanowej spowodował wzrost gęstości pozornej z 24,6 kg/m3 pianki referencyjnej do 28,5 kg/m3 pianki zawierającej 1,5 php nanokrzemionki. Dodatek nanokrzemionki nie wpłynął w istotnym stopniu na strukturę komórkową pianek, jednak materiały wytworzone z udziałem nanokrzemionki w ilości 1,0 php charakteryzowały się najkorzystniejszymi właściwościami, m.in. nieznacznie większą odbojnością, mniejszą twardością i większym współczynnikiem komfortu niż pianki niezawierające nanokrzemionki

    Thermal insulation and mechanical properties of foamed polyurethane and hemp fibre composites

    No full text
    Otrzymano porowate kompozyty poliuretanowe o różnej zawartości włókna konopnego. Jako jeden ze składników poliolowych zastosowano pochodną hydroksylową oleju rzepakowego. Włókna konopne o różnych rozmiarach wprowadzano do przedmieszki poliolowej. Celem badań było wprowadzenie do matrycy poliuretanowej surowców odnawialnych, i ocena ich wpływu na wybrane właściwości otrzymanych kompozytów.The porous polyurethane composites with different content of hemp fibers were prepared. Rapeseed oil-based derivative with hydroxyl groups was used as a one of polyol components. Hemp fibers of different sizes were incorporated into the polyol premix. The aim of the work was to introduce renewable raw materials into the polyurethane matrix and the evaluation of their influence on selected properties of prepared composites

    Porous polyurethane plastics synthetized using bio-polyols from renewable raw materials

    No full text
    A literature review and own investigations have been a base for presenting various methods of the synthesis of bio-polyols from renewable raw materials as well as their potential applications in the formulations of flexible and rigid polyurethane foams (Table 1). A characteristics of selected bio-polyols (Table 2) and their effect on foaming process of different polyurethane compositions are shown (Fig. 1, Table 3). Examples of the influence of selected bio-polyols on cell structures and physical and mechanical properties of both flexible (Fig. 2) and rigid (Table 4) foams are also presented.Na podstawie przeglądu literatury i badań własnych omówiono różne metody wytwarzania bio-polioli z surowców odnawialnych oraz możliwości ich zastosowania w syntezie elastycznych isztywnych pianek poliuretanowych (tabela 1). Zaprezentowano charakterystykę wybranych bio-polioli (tabela 2) oraz ich wpływ na przebieg procesu spieniania różnych kompozycji poliuretanowych (rys.1, tabela 3). Podano przykłady wpływu wybranych bio-polioli na strukturę komórkową i właściwości fizyczne i mechaniczne modyfikowanych pianek elastycznych (rys. 2) i sztywnych (tabela 4)
    corecore