960 research outputs found

    Modelling and Optimization of the Air Operational Manoeuvre

    Get PDF
    Increasing complexity of the operational environment and advanced technology implementation in combat will probably lead to a serious limitation of human performance in all operational domains and activities in the future. With except of the clear indications, that tactical robotics will outperform human soldiers in many routine tasks on the battlefield, the area of operational decision making (resistible for decades to some automation) seems to be slowly approaching to the same stage. Presented article discusses the fundamental theory of optimization of the air operational maneuver and present the approach to the solution. The solution is highly theoretical and uses a modelling and simulation as an experimental platform to the visualization and evaluation of solution. The problem of air operational maneuver is specific in this case by many variables imposed on initial parametrization of the task (starting and destination point could not be known at the beginning, only \u201cair operational\u201d area should be selected) and very wide search of possible courses of action and the best \u201cmulti criteria\u201d choice identification

    Control of an Active Suspension System as a Benchmark for Design and Optimization of Restricted Complexity Controllers

    Get PDF
    A benchmark problem for restricted complexity controller design is introduced. The objective is to design the lowest-order controller which meets the control specifications for an active suspension system. The input-output data of the plant are provided on the benchmark site and the final controllers are evaluated using the closed-loop data. Thirteen solutions proposed to solve the benchmark problem are briefly presented and classified in terms of methodology and compared with respect to their complexity and performance

    A Desert Tortoise–Common Raven Viable Conflict Threshold

    Get PDF
    Since 1966, common raven (Corvus corax; raven) abundance has increased throughout much of this species’ Holarctic distribution, fueled by an ever-expanding supply of anthropogenic resource subsidies (e.g., water, food, shelter, and nesting substrate) to ecoregion specific raven population carrying capacities. Consequently, ravens are implicated in declines of both avian and reptilian species of conservation concern, including the California (USA) endangered and federally threatened Mojave desert tortoise (Gopherus agassizii; desert tortoise). While ravens are a natural predator of desert tortoises, the inter-generational stability of desert tortoise populations is expected to be compromised as annual juvenile survival is suppressed below 0.77 through a combination of raven depredation and other sources of mortality. To estimate the extent to which raven depredation suppresses desert tortoise recruitment within the Mojave Desert of California, we collected data from 274 variable-radius point counts, 78 desert tortoise decoy stations, and 8 control stations during the spring of 2020. Additionally, we complied a geodatabase of previously active raven nests, observed between 2013 and 2020. Raven density estimates from 4 monitoring areas ranged between 0.63 (eastern most) and 2.44 (western most) raven km-2 (95% CI: 0.35–1.14 and 1.33–4.48, respectively). We used a Bayesian shared frailty model to estimate the effects of raven density and distance to the nearest previously active raven nest on the annual “survival” of juvenile desert tortoise decoys (75-mm Midline Carapace Length), which we then converted into survival estimates for 0- to 10-year-old desert tortoises by adjusting exposure to reflect natural activity patterns. At the 1.72-km median distance from the nearest previously active raven nest, the estimated annual survival of desert tortoises decreased as raven density increased, ranging among conservation areas from 0.774 (eastern most) to 0.733 (western most). Accordingly, our model predicts that desert tortoise populations exposed to raven densities in excess of 0.89 raven km-2, at a distanc

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Persistence Through Collaboration at Sea for Off-Shore and Coastal Operations

    Get PDF
    Collaboration (Bruzzone et al. 2013a, b, c, d, e, f) is often mentioned as an opportunity to develop new capabilities for autonomous systems; indeed this paper proposes a practical application where use this approach to enhance the autonomy of the systems during operations in coastal areas or around offshore platforms. The proposed case deals with developing a collaborative approach (Bruzzone et al. 2013a, b, c, d, e, f) among an USV (Unmanned Surface Vehicle) with several AUV (Autonomous Underwater Vehicles) to guarantee persistent surveillance over a marine area (Shkurti et al. 2012). Obviously, the proposed solution could be adopted also for defense and homeland security (Bruzzone et al. 2011a, b, 2010) as well as for archeological site protection in consistence with related cost analysis. The authors propose a technological solution as well as a simulation framework to validate and demonstrate the capabilities of this new approach as well as to quantify expected improvements

    Pinyon and Juniper Encroachment into Sagebrush Ecosystems Impacts Distribution and Survival of Greater Sage-Grouse

    Get PDF
    AbstractIn sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State DPS, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread

    Molecular characteristics of mismatch repair genes in sporadic colorectal tumors in Czech patients

    Get PDF
    BACKGROUND: Mismatch repair (MMR) genes are known to be frequently altered in colorectal cancer (CRC). Both genetics and epigenetics modifications seems to be relevant in this phenomenon, however it is still not clear how these two aspects are interconnected. The present study aimed at characterizing of epigenetic and gene expression profiles of MMR genes in sporadic CRC patients from the Czech Republic, a country with one of the highest incidences of this cancer all over Europe. METHODS: Expression levels and CpG promoter methylation status of all MMR genes were evaluated in DNA from tumor and adjacent mucosal samples of 53 incident CRC patients. RESULTS: We have found significantly increased transcription levels in EXO1 gene in tumor tissues (P = 0.05) and significant over-expression of MSH3 gene in colon tumors when compared to adjacent mucosal tissues (P = 0.02). Interestingly, almost all MMR genes were differently expressed when localization of tumors was compared. In particular, colon tumors showed an up-regulation of EXO1, MSH2, MSH3, MSH6, and PMS2 genes in comparison to rectal tumors (P = 0.02). Expression levels of all MMR genes positively correlated between each other. The promoter methylation of MLH1 gene was observed in 9% of CRC tissues only. CONCLUSIONS: In our study, we have observed different pattern of MMR genes expression according to tumor localization. However, a lack of association between methylation in MMR genes and their corresponding expressions was noticed in this study, the relationship between these two aspects is worthy to be analyzed in larger population studies and in pre-malignant stages

    Chronic Diarrhea and Pancolitis Caused by Paracoccidioidomycosis: A Case Report

    Get PDF
    South American blastomycosis is a systemic micosis caused by infection with Paracoccidioides brasiliensis. The most frequently affected sites are the lower lip buccal mucous membrane, palate, tongue, sublingual region, lymph glands, and lungs. However, colonic involvement is not a common expression of Paracoccidioidomycosis. We report a case of chronic diarrhea and pancolitis caused by Paracoccidioidomycosis with fatal outcome
    corecore