9,821 research outputs found

    The Keck+Magellan Survey for Lyman Limit Absorption II: A Case Study on Metallicity Variations

    Full text link
    We present an absorption line analysis of the Lyman limit system (LLS) at z=3.55 in our Magellan/MIKE spectrum of PKS2000-330. Our analysis of the Lyman limit and full HI Lyman series constrains the total HI column density of the LLS (N_HI = 10^[18.0 +/- 0.25] cm^{-2} for b_HI >= 20 km/s) and also the N_HI values of the velocity subsystems comprising the absorber. We measure ionic column densities for metal-line transitions associated with the subsystems and use these values to constrain the ionization state (>90% ionized) and relative abundances of the gas. We find an order of magnitude dispersion in the metallicities of the subsystems, marking the first detailed analysis of metallicity variations in an optically thick absorber. The results indicate that metals are not well mixed within the gas surrounding high zz galaxies. Assuming a single-phase photoionization model, we also derive an N_H-weighted metallicity, = -1.66 +/- 0.25, which matches the mean metallicity in the neutral ISM in high z damped Lya systems (DLAs). Because the line density of LLSs is ~10 times higher than the DLAs, we propose that the former dominate the metal mass-density at z~3 and that these metals reside in the galaxy/IGM interface. Considerations of a multi-phase model do not qualitatively change these conclusions. Finally, we comment on an anomalously large O^0/Si^+ ratio in the LLS that suggests an ionizing radiation field dominated by soft UV sources (e.g. a starburst galaxy). Additional abundance analysis is performed on the super-LLS systems at z=3.19.Comment: 20 pages, 7 figures (most in color). Accepted to Ap

    The geometry effects of an expanding Universe on the detection of cool neutral gas at high redshift

    Full text link
    Recent high redshift surveys for 21-cm absorption in damped Lyman-alpha absorption systems (DLAs) take the number of published searches at z > 2 to 25, the same number as at z < 2, although the detection rate at high redshift remains significantly lower (20% cf. 60%). Using the known properties of the DLAs to estimate the unknown profile widths of the 21-cm non-detections and including the limits via a survival analysis, we show that the mean spin temperature/covering factor degeneracy at high redshift is, on average, double that of the low redshift sample. This value is significantly lower than the previous factor of eight for the spin temperatures and is about the same factor as in the angular diameter distance ratios between the low and high redshift samples. That is, without the need for the several pivotal assumptions, which lead to an evolution in the spin temperature, we show that the observed distribution of 21-cm detections in DLAs can be accounted for by the geometry effects of an expanding Universe. That is, as yet there is no evidence of the spin temperature of gas rich galaxies evolving with redshift.Comment: Accepted by ApJ Letter

    Understanding Physical Conditions in High Redshift Galaxies through C I Fine Structure Lines: Data and Methodology

    Full text link
    We probe the physical conditions in high redshift galaxies, specifically, the Damped Lyman-alpha Systems (DLAs) using neutral carbon (CI) fine structure lines and molecular hydrogen (H2). We report five new detections of CI and analyze the CI in an additional 2 DLAs with previously published data. We also present one new detection of H2 in a DLA. We present a new method of analysis that simultaneously constrains \emph{both} the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of CI measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 CI velocity components in 6 DLAs and compare their properties to those derived by the global CII* technique. The resulting median values for this sample are: = 69 cm^{-3}, = 50 K, and = 3.86 cm^{-3} K, with standard deviations, sigma_{n(HI)} = 134 cm^{-3}, sigma_T = 52 K, and sigma_{log(P/k)} = 3.68 cm^{-3} K. This can be compared with the integrated median values for the same DLAs : = 2.8 cm^{-3}, = 139 K, and = 2.57 cm^{-3} K, with standard deviations sigma_{n(HI)} = 3.0 cm^{-3}, sigma_T = 43 K, and sigma_{log(P/k)} = 0.22 cm^{-3} K. Interestingly, the pressures measured in these high redshift CI clouds are similar to those found in the Milky Way. We conclude that the CI gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.Comment: Accepted for publication in Ap

    The color excess of quasars with intervening DLA systems- Analysis of the SDSS data release five

    Full text link
    We analyzed the spectroscopic and photometric database of the 5th data release of the Sloan Digital Sky Survey (SDSS) to search for evidence of the quasar reddening produced by dust embedded in intervening damped Ly alpha (DLA) systems. From a list of 5164 quasars in the interval of emission redshift 2.25 /= 4, we built up an "absorption sample" of 248 QSOs with a single DLA system in the interval of absorption redshift 2.2 < z_a </= 3.5 and a "pool" of 1959 control QSOs without DLA systems or strong metal systems. For each QSO of the absorption sample we extracted from the pool a subset of control QSOs that are closest in redshift and magnitude. The mean color of this subset was used as a zero point to measure the "deviation from the mean color" of individual DLA-QSOs, Delta_i. The colors were measured using "BEST" ugriz SDSS imaging data. The mean color excess of the absorption sample, , was estimated by averaging the individual color deviations Delta_i. We find = 27 +/- 9 x 10**(-3) mag and = 54 +/- 12 x 10**(-3) mag. These values are representative of the reddening of DLA systems at z_a ~ 2.7 in SDSS QSOs with limiting magnitude r =/~ 20.2. The detection of the mean reddening is confirmed by several statistical tests. Analysis of the results suggests an origin of the reddening in dust embedded in the DLA systems, with an SMC-type extinction curve. By converting the reddening into rest-frame extinction, we derive a mean dust-to-gas ratio ~ 2 to 4 x 10**(-23) mag cm^2. This value is ~ -1.25 dex lower than the mean dust-to-gas ratio of the Milky Way, in line with the lower level of metallicity in the present DLA sample.Comment: Accepted for publication on Astronomy & Astrophysics, 17 pages, 10 figure
    • …
    corecore