95 research outputs found

    Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    Get PDF
    Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content

    Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization

    Full text link
    [EN] Seed transmission of Turnip yellow mosaic virus (TYMV, genus Tymovirus) was evaluated in the whole seeds and seedlings that emerged from three commercial Chinese cabbage (Brassica pekinensis) seed batches. Seedlings in the cotyledon stage and adult plants were assayed for TYMV by DAS-ELISA and confirmed by RT-PCR. The proportion of whole seeds infected with TYMV was at least 0.15 %. The seeds of the three seed batches were grown in Petri dishes, and surveyed in the cotyledon stage in trays that contained a peat:sand mixture grown in greenhouses or growth chambers, which were analysed in the cotyledon and adult stages. The seed-to-seedling transmission rate ranged from 2.5 % to 2.9 % in two different seed batches (lot-08 and lot-09, respectively). Spanish isolates derived from turnip (Sp-03) and Chinese cabbage (Sp-09 and Sp-13), collected in 2003, 2009 and 2013 in two different Spanish regions, were molecularly characterised by analysing the partial nucleotide sequences of three TYMV genome regions: partial RNA-dependent RNA polymerase (RdRp), methyltransferase (MTR) and coat protein (CP) genes. Phylogenetic analyses showed that the CP gene represented two different groups: TYMV-1 and TYMV-2. The first was subdivided into three subclades: European, Australian and Japanese. Spanish isolate Sp-03 clustered together with European TYMV group, whereas Sp-09 and Sp-13 grouped with the Japanese TYMV group, and all differed from group TYMV-2. The sequences of the three different genomic regions examined clustered into the same groups. The results suggested that Spanish isolates grouped according to the original hosts from which they were isolated. The inoculation of the Spanish TYMV isolates to four crucifer plants species (turnip, broccoli, Brunswick cabbage and radish) revealed that all the isolates infected turnip with typical symptoms, although differences were observed in other hosts.Alfaro Fernández, AO.; Serrano, A.; Tornos, T.; Cebrian Mico, MC.; Córdoba-Sellés, MDC.; Jordá, C.; Font San Ambrosio, MI. (2016). Turnip yellow mosaic virus in Chinese cabbage in Spain: Commercial seed transmission and molecular characterization. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 146(2):433-442. doi:10.1007/s10658-016-0929-3S4334421462Assis Filho, M., & Sherwood, J. L. (2000). Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology, 90, 1233–1238.Benetti, M. P., & Kaswalder, F. (1983). Trasmisione per seme del virus del mosaico giallo rapa. Annali dell Istituto Sperimentale per la Patologia Vegetale, 8, 67–70.Blok, J., Mackenzie, A., Guy, P., & Gibbs, A. (1987). Nucleotide sequence comparisons of Turnip yellow mosaic virus isolates from Australia and Europe. Archives of Virology, 97, 283–295.Brunt, A., Crabtree, K., Dallwitz, M., Gibbs, A., Watson, L., & Zurcher, E.J. (1996). Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL http://biology.anu.edu.au/Groups/MES/vide/ .Campbell, R. N., Wipf-Scheibel, C., & Lecoq, H. (1996). Vector-assissted seed transmission of melon necrotic spot virus in melon. Phytopathology, 86, 1294–1298.Dreher, T. W., & Bransom, K. L. (1992). Genomic RNA sequence of Turnip yellow mosaic virus isolate TYMC, a cDNA-based clone with verified infectivity. Plant Molecular Biology, 18, 403–406.Fakhro, A., Von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gibbs, A. J., & Gower, J. C. (1960). The use of a multiple-transfer method in plant virus transmission studies: some statistical points arising in the analysis of results. Annals of Applied Biology, 48, 75–83.Hayden, C. M., Mackenzie, A. M., & Gibbs, A. J. (1998a). Virion protein sequence variation among Australian isolates of turnip yellow mosaic tymovirus. Archives of Virology, 143, 191–201.Hayden, C. M., Mackenzie, A. M., Skotnicki, M. L., & Gibbs, A. (1998b). Turnip yellow mosaic virus isolates with experimentally produced recombinant virion proteins. Journal of General Virology, 79, 395–403.Hein, A. (1984). Transmission of Turnip yellow mosaic virus through seed of Camelina sativa gold of pleasure. Journal of Plant Diseases and Protection, 91, 549–551.Herrera-Vásquez, J. A., Córdoba-Sellés, M. C., Cebrián, M. C., Alfaro-Fernández, A., & Jordá, C. (2009). Seed transmission of Melon necrotic spot virus and efficacy of seed-disinfection treatments. Plant Pathology, 58, 436–452.Hull, R. (2002). Matthews’ plant virology (4a ed.1001 pp). San Diego: Academic Press.Johansen, E., Edwards, M. C., & Hampton, R. O. (1994). Seed transmission of viruses: current perspectives. Annual Review of Phytopathology, 32, 363–386.Kirino, N., Inoue, K., Tanina, K., Yamazaki, Y., & Ohki, S. T. (2008). Turnip yellow mosaic virus isolated from Chinese cabbage in Japan. Journal of General Plant Pathology, 74, 331–334.Markham, R., & Smith, K. S. (1949). Studies on the virus of turnip yellow mosaic. Parasitology, 39, 330–342.Mathews, R. E. F. (1980). Turnip yellow mosaic virus, CMI/AAB Descriptions of plant virus No. 230 (No. 2 revised). Kew: Commonwealth Mycology Institute/Association of Applied Biologists.Mitchell, E. J., & Bond, J. M. (2005). Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Archives of Virology, 150, 2347–2355.Pagán, I., Fraile, A., Fernández-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philosophical Transations of the Royal Society Biological Sciences, 365, 1983–1995.Paul, H. L., Gibbs, A., & Wittman-Liebold, B. (1980). The relationships of certain Tymoviruses assessed from the amino acid composition of their coat proteins. Intervirology, 13, 99–109.Pelikanova, J. (1990). Garlic mustard a spontaneous host of TYMV. Ochrana Rostlin, 26, 17–22.Procházková, Z. (1980). Host range and symptom differences between isolates of Turnip mosaic virus obtained from Sisymbrium loeselii. Biologia Plantarum, 22, 341–347.Rimmer, S. R., Shtattuck, V. I., & Buchwaldt, L. (2007). Compendium of brassica diseases (1ª Edición ed.p. 117). USA: APS press.Rot, M. E., & Jelkman, W. (2001). Characterization and detection of several filamentous viruses of cherry: Adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. European Journal of Plant Pathology, 107, 411–420.Sabanadzovic, S., Abou-Ghanem, N., Castellano, M. A., Digiaero, M., & Martelli, G. P. (2000). Grapevine fleck virus-like in Vitis. Archives of Virology, 145, 553–565.Špack, J., & Kubelková, D. (2000). Serological variability among European isolates of Radish mosaic virus. Plant Pathology, 49, 295–301.Špack, J., Kubelková, D., & Hnilicka, E. (1993). Seed transmission of Turnip yellow mosaic virus in winter turnip and winter oilseed rapes. Annals of Applied Biology, 123, 33–35.Stobbs, L. W., Cerkauskas, R. F., Lowery, T., & VanDriel, L. (1998). Occurrence of Turnip yellow mosaic virus on oriental cruciferours vegetables in Southern Ontario, Canada. Plant Disease, 82, 351.Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739

    Inhibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine betaine biosynthesis

    Get PDF
    Nitric oxide synthase-like activity contributes to the production of nitric oxide in plants, which controls plant responses to stress. This study investigates if changes in ascorbate peroxidase enzymatic activity and glycine betaine content in response to inhibition of nitric oxide synthase-like activity are associated with transcriptional regulation by analyzing transcript levels of genes (betaine aldehyde dehydrogenase) involved in glycine betaine biosynthesis and those encoding antioxidant enzymes (ascorbate peroxidase and catalase) in leaves of maize seedlings treated with an inhibitor of nitric oxide synthase-like activity. In seedlings treated with a nitric oxide synthase inhibitor, transcript levels of betaine aldehyde dehydrogenase were decreased. In plants treated with the nitric oxide synthase inhibitor, the transcript levels of ascorbate peroxidase-encoding genes were down-regulated. We thus conclude that inhibition of nitric oxide synthase-like activity suppresses the expression of ascorbate peroxidase and betaine aldehyde dehydrogenase genes in maize leaves. Furthermore, catalase activity was suppressed in leaves of plants treated with nitric oxide synthase inhibitor; and this corresponded with the suppression of the expression of catalase genes. We further conclude that inhibition of nitric oxide synthase-like activity, which suppresses ascorbate peroxidase and catalase enzymatic activities, results in increased H2O2 content

    Flavonoids in prevention of diseases with respect to modulation of Ca-pump function

    Get PDF
    Flavonoids, natural phenolic compounds, are known as agents with strong antioxidant properties. In many diseases associated with oxidative/nitrosative stress and aging they provide multiple biological health benefits. Ca2+-ATPases belong to the main calcium regulating proteins involved in the balance of calcium homeostasis, which is impaired in oxidative/nitrosative stress and related diseases or aging. The mechanisms of Ca2+-ATPases dysfunction are discussed, focusing on cystein oxidation and tyrosine nitration. Flavonoids act not only as antioxidants but are also able to bind directly to Ca2+-ATPases, thus changing their conformation, which results in modulation of enzyme activity

    Climate-smart agriculture practices for mitigating greenhouse gas emissions

    Get PDF
    Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems

    The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?

    Get PDF
    Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance

    Specific Heat Study of PrNi 4

    No full text
    Here we present the results of pilot polycrystalline study of PrNi4SiPrNi_4Si. The X-ray study did not confirm the expected CaCu5CaCu_5-type structure. Instead of this, the orthorhombic structure with the space group Cmmm was found. The zero-field specific heat was measured in the temperature range 2-300 K. The data were analyzed using the sum of the phonon, electronic, and magnetic contributions to specific heat, respectively. The magnetic part of the specific heat can be well described using the Schottky formula for the 9 crystal-field singlet levels of the pz3 H4 ground-state multiplet of the Pr3+Pr^{3+} ion

    Specific Heat Study of PrNi4SiPrNi_4Si

    No full text
    Here we present the results of pilot polycrystalline study of PrNi4SiPrNi_4Si. The X-ray study did not confirm the expected CaCu5CaCu_5-type structure. Instead of this, the orthorhombic structure with the space group Cmmm was found. The zero-field specific heat was measured in the temperature range 2-300 K. The data were analyzed using the sum of the phonon, electronic, and magnetic contributions to specific heat, respectively. The magnetic part of the specific heat can be well described using the Schottky formula for the 9 crystal-field singlet levels of the pz3 H4 ground-state multiplet of the Pr3+Pr^{3+} ion
    corecore