228 research outputs found

    Twenty Years of Rad-Hard K14 SPAD in Space Projects

    Get PDF
    During last two decades, several photon counting detectors have been developed in our laboratory. One of the most promising detector coming from our group silicon K14 Single Photon Avalanche Diode (SPAD) is presented with its valuable features and space applications. Based on the control electronics, it can be operated in both gated and non-gated mode. Although it was designed for photon counting detection, it can be employed for multiphoton detection as well. With respect to control electronics employed, the timing jitter can be as low as 20 ps RMS. Detection efficiency is about 40%in range of 500 nm to 800 nm. The detector including gating and quenching circuitry has outstanding timing stability. Due to its radiation resistivity, the diode withstands 100 krad gamma ray dose without parameters degradation. Single photon detectors based on K14 SPAD were used for planetary altimeter and atmospheric lidar in MARS92/96 and Mars Surveyor ’98 space projects, respectively. Recent space applications of K14 SPAD comprises LIDAR and mainly time transfer between ground stations and artificial satellites. These include Laser Time Transfer, Time Transfer by Laser Link, and European Laser Timing projects

    Defects Studies of ZnO Single Crystals Prepared by Various Techniques

    Get PDF
    The aim of the present work was a comparison of defects in ZnO crystals grown by various techniques available nowadays, namely hydrothermal growth, pressurized melt, Bridgman method growth and vapor phase growth. Positron annihilation spectroscopy was employed as a principal tool for characterization of defects in ZnO crystals grown by above mentioned various techniques. ZnO crystals can be divided into two groups: (i) hydrothermal grown crystals, which exhibit positron lifetime of 179-182 ps and (ii) ZnO crystals grown by the other techniques (pressurized melt, Bridgman method, vapor phase growth) which are characterized by the lower lifetimes falling in the range of 160-173 ps. Comparison of experimental data with ab initio theoretical calculations revealed that HT grown ZnO crystals contains Zn vacancies associated with hydrogen atom in a bond-centered site. On the other hand, ZnO crystals prepared by other techniques contain most probably stacking faults created by stresses induced by temperature gradients in the melt

    Defect studies of ZnO films prepared by pulsed laser deposition on various substrates

    Get PDF
    ZnO thin films deposited on various substrates were characterized by slow positron implantation spectroscopy (SPIS) combined with X-ray diffraction (XRD). All films studied exhibit wurtzite structure and crystallite size 20-100 nm. The mosaic spread of crystallites is relatively small for the films grown on single crystalline substrates while it is substantial for the film grown on amorphous substrate. SPIS investigations revealed that ZnO films deposited on single crystalline substrates exhibit significantly higher density of defects than the film deposited on amorphous substrate. This is most probably due to a higher density of misfit dislocations, which compensate for the lattice mismatch between the film and the substrate

    LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment

    Full text link
    Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy

    Double diffractive cross-section measurement in the forward region at LHC

    Full text link
    The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .Comment: 5 pages, 1 figure, submitted for publicatio

    Performance of the TOTEM Detectors at the LHC

    Get PDF
    The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.Comment: 40 pages, 31 figures, submitted to Int. J. Mod. Phys.

    Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at s=7\sqrt{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle Dynamics. Accepted for publication in Prog. Theor. Phy

    Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.Comment: 12pages, 5 figures, CERN preprin

    Diamond Detectors for the TOTEM Timing Upgrade

    Full text link
    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.Comment: 26 pages, 18 figures, 2 tables, submitted for publication to JINS
    corecore